Spectrum of self-affine measures on the Sierpinski family

{"title":"Spectrum of self-affine measures on the Sierpinski family","authors":"","doi":"10.1007/s00605-023-01939-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this study, a spectrum <span> <span>\\(\\Lambda \\)</span> </span> for the integral Sierpinski measures <span> <span>\\(\\mu _{M, D}\\)</span> </span> with the digit set <span> <span>\\( D= \\left\\{ \\begin{pmatrix} 0\\\\ 0 \\end{pmatrix}, \\begin{pmatrix} 1\\\\ 0 \\end{pmatrix}, \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\\right\\} \\)</span> </span> is derived for a <span> <span>\\(2 \\times 2\\)</span> </span> diagonal matrix <em>M</em> with entries as <span> <span>\\(3\\ell _1\\)</span> </span> and <span> <span>\\(3\\ell _4\\)</span> </span> and for off-diagonal matrix <em>M</em> with both the off-diagonal entries as <span> <span>\\(3\\ell \\)</span> </span> where, <span> <span>\\(\\ell ,\\ell _1,\\ell _4 \\in {\\mathbb {Z}}{\\setminus }{\\{0\\}}\\)</span> </span>. Additionally, the spectrum of <span> <span>\\(\\mu _{M, D}\\)</span> </span> for a given <em>M</em> and a generalized digit set <em>D</em> is also examined. The spectrum of self-affine measures <span> <span>\\(\\mu _{M, D}\\)</span> </span> on spatial Sierpinski gasket is obtained when <em>M</em> is diagonal matrix with entries <span> <span>\\(\\ell _i \\in 2{\\mathbb {Z}}\\setminus {\\{0\\}}\\)</span> </span>, sign of <span> <span>\\(\\ell _i\\)</span> </span>’s are same and <span> <span>\\(D=\\{0, e_1, e_2, e_3\\}\\)</span> </span>, where <span> <span>\\(e_i's \\)</span> </span> are the standard basis in <span> <span>\\({\\mathbb {R}}^3\\)</span> </span>. Further, the spectrum of <span> <span>\\(\\mu _{M, D}\\)</span> </span> for some off-diagonal <span> <span>\\(3\\times 3\\)</span> </span> matrices is also found. </p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01939-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a spectrum \(\Lambda \) for the integral Sierpinski measures \(\mu _{M, D}\) with the digit set \( D= \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} \) is derived for a \(2 \times 2\) diagonal matrix M with entries as \(3\ell _1\) and \(3\ell _4\) and for off-diagonal matrix M with both the off-diagonal entries as \(3\ell \) where, \(\ell ,\ell _1,\ell _4 \in {\mathbb {Z}}{\setminus }{\{0\}}\) . Additionally, the spectrum of \(\mu _{M, D}\) for a given M and a generalized digit set D is also examined. The spectrum of self-affine measures \(\mu _{M, D}\) on spatial Sierpinski gasket is obtained when M is diagonal matrix with entries \(\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}\) , sign of \(\ell _i\) ’s are same and \(D=\{0, e_1, e_2, e_3\}\) , where \(e_i's \) are the standard basis in \({\mathbb {R}}^3\) . Further, the spectrum of \(\mu _{M, D}\) for some off-diagonal \(3\times 3\) matrices is also found.

西尔平斯基族上的自阿芬度量谱
Abstract In this study, a spectrum \(\Lambda \) for the integral Sierpinski measures \(\mu _{M, D}\) with the digit set \( D= \left\{ \begin{pmatrix})。0 (end{pmatrix}), (begin{pmatrix})1\ 0 (end{pmatrix}), (begin{pmatrix})0 1 (end{pmatrix})。\对于对角矩阵M的对角条目为(3\ell _1)和(3\ell _4)以及非对角矩阵M的非对角条目均为(3\ell \),可以得出(\ell ,\ell_1,\ell_4在{\mathbb{Z}}{setminus}\{0\}})。此外,我们还研究了给定 M 和广义数字集 D 的 \(\mu _{M, D}\) 的谱。当 M 是对角矩阵时,可以得到空间西尔平斯基垫圈上的自(\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}\) 的谱、D={0, e_1, e_2, e_3\} (其中 e_i's ()是在 {\mathbb {R}}^3\) 中的标准基础)。此外,还找到了一些非对角\(3\times 3\) 矩阵的\(\mu _{M, D}\) 谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信