a-Weyl’s theorem and hypercyclicity

Ying Liu, Xiaohong Cao
{"title":"a-Weyl’s theorem and hypercyclicity","authors":"Ying Liu, Xiaohong Cao","doi":"10.1007/s00605-024-01951-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>H</i> be a complex infinite dimensional Hilbert space, <i>B</i>(<i>H</i>) be the algebra of all bounded linear operators acting on <i>H</i>, and <span>\\(\\overline{HC(H)}\\)</span> <span>\\((\\overline{SC(H)})\\)</span> be the norm closure of the class of all hypercyclic operators (supercyclic operators) in <i>B</i>(<i>H</i>). An operator <span>\\(T\\in B(H)\\)</span> is said to be with hypercyclicity (supercyclicity) if <i>T</i> is in <span>\\(\\overline{HC(H)}\\)</span> <span>\\((\\overline{SC(H)})\\)</span>. Using a new spectrum defined from “consistent in invertibility”, this paper gives necessary and sufficient conditions that <i>T</i> is with a-Browder’s theorem or with a-Weyl’s theorem. Further, this paper gives a necessary and sufficient condition that <i>T</i> is a-isoloid, with a-Weyl’s theorem and with hypercyclicity (supercyclicity) concurrently. Also, the relations between that <i>T</i> is with hypercyclicity (supercyclicity) and that <i>T</i> is both with a-Weyl’s theorem and a-isoloid are discussed by means of the new spectrum.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01951-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a complex infinite dimensional Hilbert space, B(H) be the algebra of all bounded linear operators acting on H, and \(\overline{HC(H)}\) \((\overline{SC(H)})\) be the norm closure of the class of all hypercyclic operators (supercyclic operators) in B(H). An operator \(T\in B(H)\) is said to be with hypercyclicity (supercyclicity) if T is in \(\overline{HC(H)}\) \((\overline{SC(H)})\). Using a new spectrum defined from “consistent in invertibility”, this paper gives necessary and sufficient conditions that T is with a-Browder’s theorem or with a-Weyl’s theorem. Further, this paper gives a necessary and sufficient condition that T is a-isoloid, with a-Weyl’s theorem and with hypercyclicity (supercyclicity) concurrently. Also, the relations between that T is with hypercyclicity (supercyclicity) and that T is both with a-Weyl’s theorem and a-isoloid are discussed by means of the new spectrum.

韦尔定理和超循环性
让 H 是一个复杂的无限维希尔伯特空间,B(H) 是作用于 H 的所有有界线性算子的代数,((overline{HC(H)})是 B(H) 中所有超循环算子(超循环算子)的规范闭包。\是 B(H) 中所有超循环算子(超循环算子)类的规范闭包。如果 T 在 \(\overline{HC(H)}\) 中,那么就可以说算子 \(T\in B(H)\) 具有超周期性(supercyclicity)。\(\overline{SC(H)})中。利用从 "一致可逆性 "定义的新谱,本文给出了 T 符合 a-Browder 定理或 a-Weyl 定理的必要条件和充分条件。此外,本文还给出了 T 同时符合 a-isoloid 定理、a-Weyl's 定理和超周期性(超周期性)的必要条件和充分条件。此外,本文还通过新谱讨论了 T 具有超周期性(超循环性)与 T 同时具有 a-Weyl 定理和孤立体之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信