Effect of mountainous rainfall on uncertainty in flood model parameter estimation

IF 2.6 4区 环境科学与生态学 Q2 WATER RESOURCES
Jeonghoon Lee, Jeonghyeon Choi, Suhyung Jang, Sangdan Kim
{"title":"Effect of mountainous rainfall on uncertainty in flood model parameter estimation","authors":"Jeonghoon Lee, Jeonghyeon Choi, Suhyung Jang, Sangdan Kim","doi":"10.2166/nh.2024.144","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/55/2/10.2166_nh.2024.144/2/m_hydrology-d-23-00144gf01.png?Expires=1712256201&amp;Signature=HW77hrWzuxW5py8XJYUh77cgakqPGbfCOyzpQaDtimFGLs3kjR21vi1fAul74A1bx3nexNDZcO5VN7k0KP3KtaOCWRu1u3zGzXOYsy-10raLVkV2mC6ydJujU9470lWGGB7ozLlDmSKIpW3mveZFgd4xpJrL67YP-AeZgZD3hE8yKkaeoBjSQTovUGxoENq2qh-bgTglAqap9XPTm7c0Hn9P7uihvMqUbXV2AIpcXnf~B8IDiIhlJsGHDbcWf9DWeq8FL~Jronw9KGVdCEoB2W8rcyIjnCT0NslF~Mu5-gVPh09DCzLM9Losz~o1JxGRi7oZoaha0gd1AvqeB1RNHg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00144gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/55/2/10.2166_nh.2024.144/2/m_hydrology-d-23-00144gf01.png?Expires=1712256201&amp;Signature=HW77hrWzuxW5py8XJYUh77cgakqPGbfCOyzpQaDtimFGLs3kjR21vi1fAul74A1bx3nexNDZcO5VN7k0KP3KtaOCWRu1u3zGzXOYsy-10raLVkV2mC6ydJujU9470lWGGB7ozLlDmSKIpW3mveZFgd4xpJrL67YP-AeZgZD3hE8yKkaeoBjSQTovUGxoENq2qh-bgTglAqap9XPTm7c0Hn9P7uihvMqUbXV2AIpcXnf~B8IDiIhlJsGHDbcWf9DWeq8FL~Jronw9KGVdCEoB2W8rcyIjnCT0NslF~Mu5-gVPh09DCzLM9Losz~o1JxGRi7oZoaha0gd1AvqeB1RNHg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/55/2/10.2166_nh.2024.144/2/m_hydrology-d-23-00144gf01.png?Expires=1712256201&amp;Signature=HW77hrWzuxW5py8XJYUh77cgakqPGbfCOyzpQaDtimFGLs3kjR21vi1fAul74A1bx3nexNDZcO5VN7k0KP3KtaOCWRu1u3zGzXOYsy-10raLVkV2mC6ydJujU9470lWGGB7ozLlDmSKIpW3mveZFgd4xpJrL67YP-AeZgZD3hE8yKkaeoBjSQTovUGxoENq2qh-bgTglAqap9XPTm7c0Hn9P7uihvMqUbXV2AIpcXnf~B8IDiIhlJsGHDbcWf9DWeq8FL~Jronw9KGVdCEoB2W8rcyIjnCT0NslF~Mu5-gVPh09DCzLM9Losz~o1JxGRi7oZoaha0gd1AvqeB1RNHg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00144gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/55/2/10.2166_nh.2024.144/2/m_hydrology-d-23-00144gf01.png?Expires=1712256201&amp;Signature=HW77hrWzuxW5py8XJYUh77cgakqPGbfCOyzpQaDtimFGLs3kjR21vi1fAul74A1bx3nexNDZcO5VN7k0KP3KtaOCWRu1u3zGzXOYsy-10raLVkV2mC6ydJujU9470lWGGB7ozLlDmSKIpW3mveZFgd4xpJrL67YP-AeZgZD3hE8yKkaeoBjSQTovUGxoENq2qh-bgTglAqap9XPTm7c0Hn9P7uihvMqUbXV2AIpcXnf~B8IDiIhlJsGHDbcWf9DWeq8FL~Jronw9KGVdCEoB2W8rcyIjnCT0NslF~Mu5-gVPh09DCzLM9Losz~o1JxGRi7oZoaha0gd1AvqeB1RNHg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Explaining the significant variability of rainfall in orographically complex mountainous regions remains a challenging task even for modern raingauge networks. To address this issue, a real-time spatial rainfall field estimation model, called WREPN (WRF Rainfall-Elevation Parameterized Nowcasting), has been developed, incorporating the influence of mountain effect based on ground raingauge networks. In this study, we examined the effect of mountainous rainfall estimates on the uncertainty of flood model parameter estimation. As a comparison, an inverse distance weighting technique was applied to ground raingauge data to estimate the spatial rainfall field. To convert the spatial rainfall fields into flood volumes, we employed the ModClark model, a conceptual rainfall–runoff model with distributed rainfall input. Bayesian theory was applied for parameter estimation to incorporate uncertainty analysis. The ModClark model demonstrated good flood reproducibility regardless of the estimation method for spatial rainfall fields. Parameter estimation results indicated that the WREPN spatial rainfall field, which accounted for the influence of the mountain effect, led to lower curve numbers due to higher estimated rainfall compared to the IDW spatial rainfall field, while the concentration time and storage coefficient showed minimal differences.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"41 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.144","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Explaining the significant variability of rainfall in orographically complex mountainous regions remains a challenging task even for modern raingauge networks. To address this issue, a real-time spatial rainfall field estimation model, called WREPN (WRF Rainfall-Elevation Parameterized Nowcasting), has been developed, incorporating the influence of mountain effect based on ground raingauge networks. In this study, we examined the effect of mountainous rainfall estimates on the uncertainty of flood model parameter estimation. As a comparison, an inverse distance weighting technique was applied to ground raingauge data to estimate the spatial rainfall field. To convert the spatial rainfall fields into flood volumes, we employed the ModClark model, a conceptual rainfall–runoff model with distributed rainfall input. Bayesian theory was applied for parameter estimation to incorporate uncertainty analysis. The ModClark model demonstrated good flood reproducibility regardless of the estimation method for spatial rainfall fields. Parameter estimation results indicated that the WREPN spatial rainfall field, which accounted for the influence of the mountain effect, led to lower curve numbers due to higher estimated rainfall compared to the IDW spatial rainfall field, while the concentration time and storage coefficient showed minimal differences.

山区降雨对洪水模型参数估计不确定性的影响
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态解释地形复杂的山区降雨量的显著变化仍然是一项具有挑战性的任务,即使对于现代雨量计网络来说也是如此。为解决这一问题,我们开发了一种名为 WREPN(WRF 降雨-高程参数化预报)的实时空间降雨场估算模型,该模型在地面雨量计网络的基础上考虑了山地效应的影响。在这项研究中,我们考察了山区降雨量估算对洪水模型参数估计不确定性的影响。作为比较,我们对地面雨量计数据采用了反距离加权技术来估算空间雨量场。为了将空间雨量场转换为洪水量,我们采用了 ModClark 模型,这是一个具有分布式降雨输入的概念性降雨-径流模型。参数估计采用了贝叶斯理论,以纳入不确定性分析。无论采用哪种空间降雨场估算方法,ModClark 模型都表现出良好的洪水重现性。参数估计结果表明,与 IDW 空间降雨场相比,考虑了山地效应影响的 WREPN 空间降雨场由于估计降雨量较高而导致曲线数较低,而浓缩时间和存储系数的差异则很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrology Research
Hydrology Research WATER RESOURCES-
CiteScore
5.00
自引率
7.40%
发文量
0
审稿时长
3.8 months
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信