Charles Mazivanhanga, Robert C. Grabowski, Eunice Pérez-Sánchez, Victor R. Carballo-Cruz
{"title":"Analysis of scaling relationships for flood parameters and peak discharge estimation in a tropical region","authors":"Charles Mazivanhanga, Robert C. Grabowski, Eunice Pérez-Sánchez, Victor R. Carballo-Cruz","doi":"10.2166/nh.2024.111","DOIUrl":null,"url":null,"abstract":"<p>Relationships between peak discharges and catchment size (e.g., flood scaling) in a catchment have the potential to support new river flood forecasting approaches but have not been tested in tropical regions. This study determined flood scaling relationships between peak discharge and nested drainage areas in the La Sierra catchment (Mexico). A statistical power law equation was applied to selected rainfall–runoff events that occurred between 2012 and 2015. Variations in flood scaling parameters were determined in relation to catchment descriptors and processes for peak downstream discharge estimation. Similar to studies in humid temperate regions, the results reveal the existence of log-linear relationships between the intercept (<em>α</em>) and exponent (<em>θ</em>) parameter values and the log–log power–law relationships between (<em>α</em>) and the peak discharge observed from the smallest headwater catchments. The flood parameter values obtained were then factored into the scaling equation (<em>Q<sub>P</sub></em> = <em>αA<sup>θ</sup></em>) and successfully predicted downstream flood peaks, especially highly recurrent flood events. The findings contribute to a better understanding of the nature of flood wave generation and support the development of new flood forecasting approaches in unregulated catchments suitable for non-stationarity in hydrological processes with climate change.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"170 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.111","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Relationships between peak discharges and catchment size (e.g., flood scaling) in a catchment have the potential to support new river flood forecasting approaches but have not been tested in tropical regions. This study determined flood scaling relationships between peak discharge and nested drainage areas in the La Sierra catchment (Mexico). A statistical power law equation was applied to selected rainfall–runoff events that occurred between 2012 and 2015. Variations in flood scaling parameters were determined in relation to catchment descriptors and processes for peak downstream discharge estimation. Similar to studies in humid temperate regions, the results reveal the existence of log-linear relationships between the intercept (α) and exponent (θ) parameter values and the log–log power–law relationships between (α) and the peak discharge observed from the smallest headwater catchments. The flood parameter values obtained were then factored into the scaling equation (QP = αAθ) and successfully predicted downstream flood peaks, especially highly recurrent flood events. The findings contribute to a better understanding of the nature of flood wave generation and support the development of new flood forecasting approaches in unregulated catchments suitable for non-stationarity in hydrological processes with climate change.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.