{"title":"Neurosymbolic Value-Inspired Artificial Intelligence (Why, What, and How)","authors":"Amit Sheth, Kaushik Roy","doi":"10.1109/mis.2023.3344353","DOIUrl":null,"url":null,"abstract":"The rapid progression of artificial intelligence (AI) systems, facilitated by the advent of large language models (LLMs), has resulted in their widespread application to provide human assistance across diverse industries. This trend has sparked significant discourse centered around the ever-increasing need for LLM-based AI systems to function among humans as a part of human society. Toward this end, neurosymbolic AI systems are attractive because of their potential to enable and interpretable interfaces for facilitating value-based decision making by leveraging explicit representations of shared values. In this article, we introduce substantial extensions to Kahneman’s System 1 and System 2 framework and propose a neurosymbolic computational framework called value-inspired AI (VAI). It outlines the crucial components essential for the robust and practical implementation of VAI systems, representing and integrating various dimensions of human values. Finally, we further offer insights into the current progress made in this direction and outline potential future directions for the field.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mis.2023.3344353","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid progression of artificial intelligence (AI) systems, facilitated by the advent of large language models (LLMs), has resulted in their widespread application to provide human assistance across diverse industries. This trend has sparked significant discourse centered around the ever-increasing need for LLM-based AI systems to function among humans as a part of human society. Toward this end, neurosymbolic AI systems are attractive because of their potential to enable and interpretable interfaces for facilitating value-based decision making by leveraging explicit representations of shared values. In this article, we introduce substantial extensions to Kahneman’s System 1 and System 2 framework and propose a neurosymbolic computational framework called value-inspired AI (VAI). It outlines the crucial components essential for the robust and practical implementation of VAI systems, representing and integrating various dimensions of human values. Finally, we further offer insights into the current progress made in this direction and outline potential future directions for the field.
期刊介绍:
IEEE Intelligent Systems serves users, managers, developers, researchers, and purchasers who are interested in intelligent systems and artificial intelligence, with particular emphasis on applications. Typically they are degreed professionals, with backgrounds in engineering, hard science, or business. The publication emphasizes current practice and experience, together with promising new ideas that are likely to be used in the near future. Sample topic areas for feature articles include knowledge-based systems, intelligent software agents, natural-language processing, technologies for knowledge management, machine learning, data mining, adaptive and intelligent robotics, knowledge-intensive processing on the Web, and social issues relevant to intelligent systems. Also encouraged are application features, covering practice at one or more companies or laboratories; full-length product stories (which require refereeing by at least three reviewers); tutorials; surveys; and case studies. Often issues are theme-based and collect articles around a contemporary topic under the auspices of a Guest Editor working with the EIC.