Jiawei Zhang, Aiqing Zhu, Feng Ji, Chang Lin, Yifa Tang
{"title":"Effective numerical simulations of synchronous generator system","authors":"Jiawei Zhang, Aiqing Zhu, Feng Ji, Chang Lin, Yifa Tang","doi":"10.1177/00375497241231986","DOIUrl":null,"url":null,"abstract":"Synchronous generator system is a complicated dynamic system for energy transmission, which plays an important role in modern industrial production. In this article, we propose some predictor-corrector methods and structure-preserving methods for a generator system based on the first benchmark model of subsynchronous resonance, among which the structure-preserving methods preserve a Dirac structure associated with the so-called port-Hamiltonian descriptor systems. To illustrate this, the simplified generator system in the form of index-1 differential-algebraic equations has been derived. Our analyses provide the global error estimates for a special class of structure-preserving methods called Gauss methods, which guarantee their superior performance over the PSCAD/EMTDC and the predictor-corrector methods in terms of computational stability. Numerical simulations are implemented to verify the effectiveness and advantages of our methods.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241231986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronous generator system is a complicated dynamic system for energy transmission, which plays an important role in modern industrial production. In this article, we propose some predictor-corrector methods and structure-preserving methods for a generator system based on the first benchmark model of subsynchronous resonance, among which the structure-preserving methods preserve a Dirac structure associated with the so-called port-Hamiltonian descriptor systems. To illustrate this, the simplified generator system in the form of index-1 differential-algebraic equations has been derived. Our analyses provide the global error estimates for a special class of structure-preserving methods called Gauss methods, which guarantee their superior performance over the PSCAD/EMTDC and the predictor-corrector methods in terms of computational stability. Numerical simulations are implemented to verify the effectiveness and advantages of our methods.