Calculated brightness temperatures of solar structures compared with ALMA and Metsähovi measurements

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Filip Matković, Roman Brajša, Matej Kuhar, Arnold O. Benz, Hans -G. Ludwig, Caius L. Selhorst, Ivica Skokić, Davor Sudar, Arnold Hanslmeier
{"title":"Calculated brightness temperatures of solar structures compared with ALMA and Metsähovi measurements","authors":"Filip Matković,&nbsp;Roman Brajša,&nbsp;Matej Kuhar,&nbsp;Arnold O. Benz,&nbsp;Hans -G. Ludwig,&nbsp;Caius L. Selhorst,&nbsp;Ivica Skokić,&nbsp;Davor Sudar,&nbsp;Arnold Hanslmeier","doi":"10.1002/asna.20230149","DOIUrl":null,"url":null,"abstract":"<p>The Atacama Large Millimeter/submillimeter Array (ALMA) allows for solar observations in the wavelength range of 0.3–10 mm, giving us a new view of the chromosphere. The measured brightness temperature at various frequencies can be fitted with theoretical models of density and temperature versus height. We use the available ALMA and Metsähovi measurements of selected solar structures (quiet sun (QS), active regions (AR) devoid of sunspots, and coronal holes (CH)). The measured QS brightness temperature in the ALMA wavelength range agrees well with the predictions of the semiempirical Avrett–Tian–Landi–Curdt–Wülser (ATLCW) model, better than previous models such as the Avrett–Loeser (AL) or Fontenla–Avrett–Loeser model (FAL). We scaled the ATLCW model in density and temperature to fit the observations of the other structures. For ARs, the fitted models require 9%–13% higher electron densities and 9%–10% higher electron temperatures, consistent with expectations. The CH fitted models require electron densities 2%–40% lower than the QS level, while the predicted electron temperatures, although somewhat lower, do not deviate significantly from the QS model. Despite the limitations of the one-dimensional ATLCW model, we confirm that this model and its appropriate adaptations are sufficient for describing the basic physical properties of the solar structures.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230149","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Atacama Large Millimeter/submillimeter Array (ALMA) allows for solar observations in the wavelength range of 0.3–10 mm, giving us a new view of the chromosphere. The measured brightness temperature at various frequencies can be fitted with theoretical models of density and temperature versus height. We use the available ALMA and Metsähovi measurements of selected solar structures (quiet sun (QS), active regions (AR) devoid of sunspots, and coronal holes (CH)). The measured QS brightness temperature in the ALMA wavelength range agrees well with the predictions of the semiempirical Avrett–Tian–Landi–Curdt–Wülser (ATLCW) model, better than previous models such as the Avrett–Loeser (AL) or Fontenla–Avrett–Loeser model (FAL). We scaled the ATLCW model in density and temperature to fit the observations of the other structures. For ARs, the fitted models require 9%–13% higher electron densities and 9%–10% higher electron temperatures, consistent with expectations. The CH fitted models require electron densities 2%–40% lower than the QS level, while the predicted electron temperatures, although somewhat lower, do not deviate significantly from the QS model. Despite the limitations of the one-dimensional ATLCW model, we confirm that this model and its appropriate adaptations are sufficient for describing the basic physical properties of the solar structures.

太阳结构亮度温度计算值与 ALMA 和 Metsähovi 测量值的比较
阿塔卡马大型毫米波/亚毫米波阵列(ALMA)可以在 0.3-10 毫米的波长范围内观测太阳,为我们提供了色球层的新视角。不同频率下测得的亮度温度可与密度和温度随高度变化的理论模型相匹配。我们利用现有的 ALMA 和 Metsähovi 测量数据对选定的太阳结构(静日(QS)、无太阳黑子的活动区(AR)和日冕洞(CH))进行了测量。在ALMA波长范围内测量到的QS亮度温度与半经验的Avrett-Tian-Landi-Curdt-Wülser(ATLCW)模型的预测结果非常吻合,优于之前的Avrett-Loeser(AL)或Fontenla-Avrett-Loeser(FAL)模型。我们对 ATLCW 模型的密度和温度进行了缩放,以拟合其他结构的观测结果。对于ARs,拟合模型要求电子密度高9%-13%,电子温度高9%-10%,与预期一致。CH拟合模型所需的电子密度比QS水平低2%-40%,而预测的电子温度虽然略低,但与QS模型的偏差不大。尽管一维 ATLCW 模型有其局限性,但我们证实该模型及其适当的调整足以描述太阳结构的基本物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信