Symmetries and exact solutions of the diffusive Holling-Tanner prey-predator model

Roman Cherniha, Vasyl' Davydovych
{"title":"Symmetries and exact solutions of the diffusive Holling-Tanner prey-predator model","authors":"Roman Cherniha, Vasyl' Davydovych","doi":"arxiv-2402.19098","DOIUrl":null,"url":null,"abstract":"We consider the classical Holling-Tanner model extended on 1D space by\nintroducing the diffusion term. Making a reasonable simplification, the\ndiffusive Holling-Tanner system is studied by means of symmetry based methods.\nLie and Q-conditional (nonclassical) symmetries are identified. The symmetries\nobtained are applied for finding a wide range of exact solutions, their\nproperties are studied and a possible biological interpretation is proposed. 3D\nplots of the most interesting solutions are drown as well.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.19098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the classical Holling-Tanner model extended on 1D space by introducing the diffusion term. Making a reasonable simplification, the diffusive Holling-Tanner system is studied by means of symmetry based methods. Lie and Q-conditional (nonclassical) symmetries are identified. The symmetries obtained are applied for finding a wide range of exact solutions, their properties are studied and a possible biological interpretation is proposed. 3D plots of the most interesting solutions are drown as well.
扩散霍林-坦纳猎物-捕食者模型的对称性和精确解
我们考虑通过引入扩散项在一维空间上扩展经典霍林-坦纳模型。通过合理的简化,我们用基于对称性的方法研究了扩散霍林-坦纳系统。所获得的对称性被用于寻找广泛的精确解,研究了它们的性质,并提出了可能的生物学解释。最有趣的解的三维图也被淹没了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信