Infrared finite scattering theory: Amplitudes and soft theorems

Kartik Prabhu, Gautam Satishchandran
{"title":"Infrared finite scattering theory: Amplitudes and soft theorems","authors":"Kartik Prabhu, Gautam Satishchandran","doi":"arxiv-2402.18637","DOIUrl":null,"url":null,"abstract":"Any non-trivial scattering with massless fields in four spacetime dimensions\nwill generically produce an out-state with memory. Scattering with any massless\nfields violates the standard assumption of asymptotic completeness -- that all\n\"in\" and \"out\" states lie in the standard (zero memory) Fock space -- and\ntherefore leads to infrared divergences in the standard $S$-matrix amplitudes.\nWe define an infrared finite scattering theory valid for general quantum field\ntheories and quantum gravity. The (infrared finite) \"superscattering\" map $\\$$\nis defined as a map between \"in\" and \"out\" states which does not require any a\npriori choice of a preferred Hilbert space. We define a \"generalized asymptotic\ncompleteness\" which accommodates states with memory in the space of asymptotic\nstates. We define a complete basis of improper states on any memory Fock space\n(called \"BMS particle\" states) which are eigenstates of the energy-momentum --\nor, more generally, the BMS supermomentum -- that generalize the usual\n$n$-particle momentum basis to account for states with memory. We then obtain\ninfrared finite $\\$$-amplitudes defined as matrix elements of $\\$$ in the BMS\nparticle basis. This formulation of the scattering theory is a key step towards\nanalyzing fine-grained details of the infrared finite scattering theory. In\nquantum gravity, invariance of $\\$$ under BMS supertranslations implies\nfactorization of $\\$$-amplitudes as the frequency of one of the BMS particles\nvanishes. This proves an infrared finite analog of the soft graviton theorem.\nSimilarly, an infrared finite soft photon theorem in QED follows from\ninvariance of $\\$$ under large gauge transformations. We comment on how one\nmust generalize this framework to consider $\\$$-amplitudes for theories with\ncollinear divergences (e.g., massless QED and Yang-Mills theories).","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.18637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Any non-trivial scattering with massless fields in four spacetime dimensions will generically produce an out-state with memory. Scattering with any massless fields violates the standard assumption of asymptotic completeness -- that all "in" and "out" states lie in the standard (zero memory) Fock space -- and therefore leads to infrared divergences in the standard $S$-matrix amplitudes. We define an infrared finite scattering theory valid for general quantum field theories and quantum gravity. The (infrared finite) "superscattering" map $\$$ is defined as a map between "in" and "out" states which does not require any a priori choice of a preferred Hilbert space. We define a "generalized asymptotic completeness" which accommodates states with memory in the space of asymptotic states. We define a complete basis of improper states on any memory Fock space (called "BMS particle" states) which are eigenstates of the energy-momentum -- or, more generally, the BMS supermomentum -- that generalize the usual $n$-particle momentum basis to account for states with memory. We then obtain infrared finite $\$$-amplitudes defined as matrix elements of $\$$ in the BMS particle basis. This formulation of the scattering theory is a key step towards analyzing fine-grained details of the infrared finite scattering theory. In quantum gravity, invariance of $\$$ under BMS supertranslations implies factorization of $\$$-amplitudes as the frequency of one of the BMS particles vanishes. This proves an infrared finite analog of the soft graviton theorem. Similarly, an infrared finite soft photon theorem in QED follows from invariance of $\$$ under large gauge transformations. We comment on how one must generalize this framework to consider $\$$-amplitudes for theories with collinear divergences (e.g., massless QED and Yang-Mills theories).
红外有限散射理论:振幅和软定理
在四维时空中与无质量场发生的任何非微量散射都会产生具有记忆的出态。与任何无质量场的散射都违反了渐近完备性的标准假设--即所有的 "入 "态和 "出 "态都位于标准(零记忆)福克空间--因此导致了标准$S$矩阵振幅的红外发散。红外有限)"超散射 "映射$\$$被定义为 "入 "态与 "出 "态之间的映射,它不需要先验地选择一个首选的希尔伯特空间。我们定义了一种 "广义渐近完备性"(generalized asymptoticcompleteness),它容纳了渐近状态空间中具有记忆的状态。我们定义了任何记忆 Fock 空间上不完全态的完整基础(称为 "BMS 粒子 "态),这些态是能量动量的特征态--或者更广义地说,是 BMS 超动量--将通常的 $n$ 粒子动量基础广义化,以考虑具有记忆的态。然后,我们得到了定义为 BMS 粒子基础中 $\$ 的矩阵元素的红外有限 $\$ 放大系数。这种散射理论的表述是分析红外有限散射理论细粒度细节的关键一步。在量子引力中,$\$$在BMS超平移下的不变性意味着$\$$振幅随着其中一个BMS粒子频率的变化而因子化。这证明了软引力子定理的红外有限性类似物。同样,QED 中的红外有限软光子定理也来自于$\$$在大规规变换下的不变性。我们评论了如何将这一框架推广到考虑具有共线发散的理论(例如无质量QED和杨-米尔斯理论)的$\$$-amplitudes。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信