{"title":"On Some Estimate for the Norm of an Interpolation Projector","authors":"Mikhail Nevskii","doi":"10.3103/S0146411623070106","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({{Q}_{n}}{{ = [0,1]}^{n}}\\)</span> be the unit cube in <span>\\({{\\mathbb{R}}^{n}}\\)</span> and let <span>\\(C({{Q}_{n}})\\)</span> be the space of continuous functions <span>\\(f:{{Q}_{n}} \\to \\mathbb{R}\\)</span> with the norm <span>\\({{\\left| {\\left| f \\right|} \\right|}_{{C({{Q}_{n}})}}}: = \\mathop {\\max }\\nolimits_{x \\in {{Q}_{n}}} \\left| {f(x)} \\right|.\\)</span> By <span>\\({{\\Pi }_{1}}\\left( {{{\\mathbb{R}}^{n}}} \\right)\\)</span> denote the set of polynomials of degree <span>\\( \\leqslant 1\\)</span>, i. e., the set of linear functions on <span>\\({{\\mathbb{R}}^{n}}\\)</span>. The interpolation projector <span>\\(P:C({{Q}_{n}}) \\to {{\\Pi }_{1}}({{\\mathbb{R}}^{n}})\\)</span> with the nodes <span>\\({{x}^{{(j)}}} \\in {{Q}_{n}}\\)</span> is defined by the equalities <span>\\(Pf\\left( {{{x}^{{(j)}}}} \\right) = f\\left( {{{x}^{{(j)}}}} \\right)\\)</span>, <span>\\(j = 1,\\)</span> <span>\\( \\ldots ,\\)</span> <span>\\(n + 1\\)</span>. Let <span>\\({{\\left| {\\left| P \\right|} \\right|}_{{{{Q}_{n}}}}}\\)</span> be the norm of <span>\\(P\\)</span> as an operator from <span>\\(C({{Q}_{n}})\\)</span> to <span>\\(C({{Q}_{n}})\\)</span>. If <span>\\(n + 1\\)</span> is an Hadamard number, then there exists a nondegenerate regular simplex having the vertices at vertices of <span>\\({{Q}_{n}}\\)</span>. We discuss some approaches to get inequalities of the form <span>\\({{\\left| {\\left| P \\right|} \\right|}_{{{{Q}_{n}}}}} \\leqslant c\\sqrt n \\)</span> for the norm of the corresponding projector <span>\\(P\\)</span>.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 7","pages":"718 - 726"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \({{Q}_{n}}{{ = [0,1]}^{n}}\) be the unit cube in \({{\mathbb{R}}^{n}}\) and let \(C({{Q}_{n}})\) be the space of continuous functions \(f:{{Q}_{n}} \to \mathbb{R}\) with the norm \({{\left| {\left| f \right|} \right|}_{{C({{Q}_{n}})}}}: = \mathop {\max }\nolimits_{x \in {{Q}_{n}}} \left| {f(x)} \right|.\) By \({{\Pi }_{1}}\left( {{{\mathbb{R}}^{n}}} \right)\) denote the set of polynomials of degree \( \leqslant 1\), i. e., the set of linear functions on \({{\mathbb{R}}^{n}}\). The interpolation projector \(P:C({{Q}_{n}}) \to {{\Pi }_{1}}({{\mathbb{R}}^{n}})\) with the nodes \({{x}^{{(j)}}} \in {{Q}_{n}}\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right)\), \(j = 1,\)\( \ldots ,\)\(n + 1\). Let \({{\left| {\left| P \right|} \right|}_{{{{Q}_{n}}}}}\) be the norm of \(P\) as an operator from \(C({{Q}_{n}})\) to \(C({{Q}_{n}})\). If \(n + 1\) is an Hadamard number, then there exists a nondegenerate regular simplex having the vertices at vertices of \({{Q}_{n}}\). We discuss some approaches to get inequalities of the form \({{\left| {\left| P \right|} \right|}_{{{{Q}_{n}}}}} \leqslant c\sqrt n \) for the norm of the corresponding projector \(P\).
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision