José Gaitan, Allan Greenleaf, Eyvindur Ari Palsson, Georgios Psaromiligkos
{"title":"On restricted Falconer distance sets","authors":"José Gaitan, Allan Greenleaf, Eyvindur Ari Palsson, Georgios Psaromiligkos","doi":"10.4153/s0008414x24000117","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, <span>k</span>-point configuration sets given by <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}\\Delta^{\\mathrm{diag}}(E)= \\{ \\,|(x,x,\\dots,x)-(y_1,y_2,\\dots,y_{k-1})| : x, y_1, \\dots,y_{k-1} \\in E\\, \\}\\end{align*} $$</span></span></img></span>for a compact <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E\\subset \\mathbb {R}^d$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k\\ge 3$</span></span></img></span></span>. We show that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta ^{\\mathrm{diag}}(E)$</span></span></img></span></span> has non-empty interior if the Hausdorff dimension of <span>E</span> satisfies <span><span>(0.1)</span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqn1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align} \\dim(E)> \\begin{cases} \\frac{2d+1}3, & k=3, \\\\ \\frac{(k-1)d}k,& k\\ge 4. \\end{cases} \\end{align} $$</span></span></img></span>We prove an extension of this to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C^\\omega $</span></span></img></span></span> Riemannian metrics <span>g</span> close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations <span>g</span>, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, k-point configuration sets given by $$ \begin{align*}\Delta^{\mathrm{diag}}(E)= \{ \,|(x,x,\dots,x)-(y_1,y_2,\dots,y_{k-1})| : x, y_1, \dots,y_{k-1} \in E\, \}\end{align*} $$for a compact $E\subset \mathbb {R}^d$ and $k\ge 3$. We show that $\Delta ^{\mathrm{diag}}(E)$ has non-empty interior if the Hausdorff dimension of E satisfies (0.1)$$ \begin{align} \dim(E)> \begin{cases} \frac{2d+1}3, & k=3, \\ \frac{(k-1)d}k,& k\ge 4. \end{cases} \end{align} $$We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.
我们引入了一类法尔科纳距离问题,我们称之为受限型问题,它介于经典型问题与其针状变体之间。典型的受限距离集是对角线距离集,k 点配置集由 $$ \begin{align*}\Delta^{mathrm{diag}}(E)=\{\,|(x,x,\dots,x)-(y_1,y_2,\dots,y_{k-1})|:x, y_1, \dots,y_{k-1} \ in E\, \}end{align*} 给出。对于一个紧凑的 $E\subset \mathbb {R}^d$ 和 $k\ge 3$ 来说是 $$。我们证明,如果 E 的 Hausdorff 维满足(0.1)$$ ,那么 $\Delta ^{mathrm{diag}}(E)$ 具有非空的内部。\dim(E)> (开始{案例}\frac{2d+1}3, & k=3, \\frac{(k-1)d}k,& k\ge 4.\end{cases}\end{align} $$We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics.对于乘积度量,这可以从已知的钉距集结果中得出,但是为了得到一般扰动 g 的结果,我们提出了一系列部分结果的证明,最终证明了完整结果,它是基于对多线性傅里叶积分算子的估计。