Refinements of Katz–Sarnak theory for the number of points on curves over finite fields

Jonas Bergström, Everett W. Howe, Elisa Lorenzo García, Christophe Ritzenthaler
{"title":"Refinements of Katz–Sarnak theory for the number of points on curves over finite fields","authors":"Jonas Bergström, Everett W. Howe, Elisa Lorenzo García, Christophe Ritzenthaler","doi":"10.4153/s0008414x2400004x","DOIUrl":null,"url":null,"abstract":"<p>This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$g\\geq 3$</span></span></img></span></span>. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\geq 3$</span></span></img></span></span>. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2400004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus Abstract Image$g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus Abstract Image$\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.

有限域上曲线点数的卡茨-萨尔纳克理论的完善
本文在理论、实验和猜想上超越了卡茨-萨尔纳克(Katz-Sarnak)关于有限域上曲线按有理点数分布的理论。特别是,我们给出了一个公式,用于测量属$g\geq 3$的(非椭圆)曲线的这种分布的不对称性的矩的极限。实验结果表明,对于属$g\geq 3$的所有曲线,收敛概念比卡茨-萨尔纳克框架提供的收敛概念更强。然而,对于椭圆曲线和每个属的超椭圆曲线,我们证明这种更强的收敛是不可能发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信