Dark energy and dark matter configurations for wormholes and solitionic hierarchies of nonmetric Ricci flows and $F(R,T,Q,T_{m})$ gravity

Laurenţiu Bubuianu, Sergiu I. Vacaru, Elşen Veli Veliev, Assel Zhamysheva
{"title":"Dark energy and dark matter configurations for wormholes and solitionic hierarchies of nonmetric Ricci flows and $F(R,T,Q,T_{m})$ gravity","authors":"Laurenţiu Bubuianu, Sergiu I. Vacaru, Elşen Veli Veliev, Assel Zhamysheva","doi":"arxiv-2402.19362","DOIUrl":null,"url":null,"abstract":"We extend the anholonomic frame and connection deformation method, AFCDM, for\nconstructing exact and parametric solutions in general relativity, GR, to\ngeometric flow models and modified gravity theories, MGTs, with nontrivial\ntorsion and nonmetricity fields. Following abstract geometric or variational\nmethods, we can derive corresponding systems of nonmetric gravitational and\nmatter field equations which consist of very sophisticated systems of coupled\nnonlinear PDEs. Using nonholonomic frames with dyadic spacetime splitting and\napplying the AFCDM, we prove that such systems of PDEs can be decoupled and\nintegrated in general forms for generic off-diagonal metric structures and\ngeneralized affine connections. We generate new classes of quasi-stationary\nsolutions (which do not depend on time like coordinates) and study the physical\nproperties of some physically important examples. Such exact or parametric\nsolutions are determined by nonmetric solitonic distributions and/or\nellipsoidal deformations of wormhole hole configurations. It is not possible to\ndescribe the thermodynamic properties of such solutions in the framework of the\nBekenstein-Hawking paradigm because such metrics do not involve, in general,\ncertain horizons, duality, or holographic configurations. Nevertheless, we can\nalways elaborate on associated Grigori Perelman thermodynamic models elaborated\nfor nonmetric geometric flows. In explicit form, applying the AFCDM, we\nconstruct and study the physical implications of new classes of traversable\nwormhole solutions describing solitonic deformation and dissipation of\nnon-Riemannian geometric objects. Such models with nontrivial gravitational\noff-diagonal vacuum are important for elaborating models of dark energy and\ndark matter involving wormhole configurations and solitonic-type structure\nformation.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.19362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the anholonomic frame and connection deformation method, AFCDM, for constructing exact and parametric solutions in general relativity, GR, to geometric flow models and modified gravity theories, MGTs, with nontrivial torsion and nonmetricity fields. Following abstract geometric or variational methods, we can derive corresponding systems of nonmetric gravitational and matter field equations which consist of very sophisticated systems of coupled nonlinear PDEs. Using nonholonomic frames with dyadic spacetime splitting and applying the AFCDM, we prove that such systems of PDEs can be decoupled and integrated in general forms for generic off-diagonal metric structures and generalized affine connections. We generate new classes of quasi-stationary solutions (which do not depend on time like coordinates) and study the physical properties of some physically important examples. Such exact or parametric solutions are determined by nonmetric solitonic distributions and/or ellipsoidal deformations of wormhole hole configurations. It is not possible to describe the thermodynamic properties of such solutions in the framework of the Bekenstein-Hawking paradigm because such metrics do not involve, in general, certain horizons, duality, or holographic configurations. Nevertheless, we can always elaborate on associated Grigori Perelman thermodynamic models elaborated for nonmetric geometric flows. In explicit form, applying the AFCDM, we construct and study the physical implications of new classes of traversable wormhole solutions describing solitonic deformation and dissipation of non-Riemannian geometric objects. Such models with nontrivial gravitational off-diagonal vacuum are important for elaborating models of dark energy and dark matter involving wormhole configurations and solitonic-type structure formation.
虫洞的暗能量和暗物质构型以及非度量利玛窦流和 $F(R,T,Q,T_{m})$ 引力的溶解性层次结构
我们扩展了符合人体工程学的框架和连接变形方法(AFCDM),以构建广义相对论(GR)中的精确解和参数解,并将其应用于具有非三扭转和非度量场的几何流模型和修正引力理论(MGT)。根据抽象几何或变分方法,我们可以推导出相应的非计量引力场和物质场方程系统,这些系统由非常复杂的耦合非线性 PDEs 系统组成。利用具有二元时空分裂的非荷尔蒙框架并应用 AFCDM,我们证明了这些 PDE 系统可以解耦,并以一般形式对一般非对角度量结构和一般化仿射连接进行积分。我们生成了新类别的准静态解(不依赖于时间和坐标),并研究了一些重要物理实例的物理特性。这些精确或参数解是由虫洞配置的非度量孤子分布和/或全等变形决定的。我们不可能在贝肯斯坦-霍金范式的框架内描述这种解的热力学性质,因为这种度量一般不涉及某些地平线、对偶性或全息构型。尽管如此,我们还是要详细阐述针对非度量几何流的相关格里高利-佩雷尔曼热力学模型。我们以明确的形式,应用 AFCDM,构建并研究了描述非黎曼几何物体孤子变形和耗散的新类可穿越蛀洞解的物理意义。这类具有非对角真空引力的模型对于阐述涉及虫洞构型和孤子型结构形成的暗能量和暗物质模型非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信