On the necessity of the inf-sup condition for a mixed finite element formulation

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Fleurianne Bertrand, Daniele Boffi
{"title":"On the necessity of the inf-sup condition for a mixed finite element formulation","authors":"Fleurianne Bertrand, Daniele Boffi","doi":"10.1093/imanum/drae002","DOIUrl":null,"url":null,"abstract":"We study a nonstandard mixed formulation of the Poisson problem, sometimes known as dual mixed formulation. For reasons related to the equilibration of the flux, we use finite elements that are conforming in $\\textbf{H}(\\operatorname{\\textrm{div}};\\varOmega )$ for the approximation of the gradients, even if the formulation would allow for discontinuous finite elements. The scheme is not uniformly inf-sup stable, but we can show existence and uniqueness of the solution, as well as optimal error estimates for the gradient variable when suitable regularity assumptions are made. Several additional remarks complete the paper, shedding some light on the sources of instability for mixed formulations.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae002","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a nonstandard mixed formulation of the Poisson problem, sometimes known as dual mixed formulation. For reasons related to the equilibration of the flux, we use finite elements that are conforming in $\textbf{H}(\operatorname{\textrm{div}};\varOmega )$ for the approximation of the gradients, even if the formulation would allow for discontinuous finite elements. The scheme is not uniformly inf-sup stable, but we can show existence and uniqueness of the solution, as well as optimal error estimates for the gradient variable when suitable regularity assumptions are made. Several additional remarks complete the paper, shedding some light on the sources of instability for mixed formulations.
论混合有限元公式中 inf-sup 条件的必要性
我们研究了泊松问题的一种非标准混合公式,有时也称为二元混合公式。由于与通量均衡相关的原因,我们使用$\textbf{H}(\operatorname\textrm{div}};\varOmega )$中符合要求的有限元来逼近梯度,即使该公式允许使用非连续有限元。该方案不是均匀 inf-sup 稳定的,但我们可以证明解的存在性和唯一性,以及在适当的正则性假设下梯度变量的最优误差估计。本文还有一些补充说明,为混合公式的不稳定性来源提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信