Effects of Rashba and Dresselhaus spin-orbit couplings on the critical temperature and paramagnetic limiting field of superconductors with broken inversion symmetry
{"title":"Effects of Rashba and Dresselhaus spin-orbit couplings on the critical temperature and paramagnetic limiting field of superconductors with broken inversion symmetry","authors":"H. Yavari, M. Tayebantayeba","doi":"10.1016/j.physc.2024.1354465","DOIUrl":null,"url":null,"abstract":"<div><p>Transition temperature (T<sub>c</sub>) and paramagnetic limiting of a superconductor without spatial inversion symmetry in the presence of both Rashba and Dresselhaus antisymmetric spin-orbit couplings is studied. The critical temperature is derived for anisotropy of the superconducting order parameter, ranging from isotropic s-wave to any pairing state with nonzero angular momentum and mixed parity singlet-triplet states emerge due to spin-orbit coupling (SOC). It will be shown that for unprotected odd parity pairing, pure Rashba and Dresselhaus SOCs have similar effects on the reduction of T<sub>c</sub> and for combined effects of the two spin-orbit couplings at fixed SOC, T<sub>c</sub> reduced by increasing Dresselhaus component and decreased down to its minimum value in the equal-Rashba-Dresselhaus case. The paramagnetic limiting is also analyzed for spin-singlet pairing and it is shown that the low temperature divergence behavior of paramagnetic limiting is less affected by both Rashba and Dresselhaus SOCs but for fixed SOC strength by increasing Dresselhaus component the paramagnetic limiting field is increased.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354465"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000303","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Transition temperature (Tc) and paramagnetic limiting of a superconductor without spatial inversion symmetry in the presence of both Rashba and Dresselhaus antisymmetric spin-orbit couplings is studied. The critical temperature is derived for anisotropy of the superconducting order parameter, ranging from isotropic s-wave to any pairing state with nonzero angular momentum and mixed parity singlet-triplet states emerge due to spin-orbit coupling (SOC). It will be shown that for unprotected odd parity pairing, pure Rashba and Dresselhaus SOCs have similar effects on the reduction of Tc and for combined effects of the two spin-orbit couplings at fixed SOC, Tc reduced by increasing Dresselhaus component and decreased down to its minimum value in the equal-Rashba-Dresselhaus case. The paramagnetic limiting is also analyzed for spin-singlet pairing and it is shown that the low temperature divergence behavior of paramagnetic limiting is less affected by both Rashba and Dresselhaus SOCs but for fixed SOC strength by increasing Dresselhaus component the paramagnetic limiting field is increased.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.