IcoConv : Explainable brain cortical surface analysis for ASD classification.

Ugo Rodriguez, Tahya Deddah, Sun Hyung Kim, Mark Shen, Kelly N Botteron, D Louis Collins, Stephen R Dager, Annette M Estes, Alan C Evans, Heather C Hazlett, Robert McKinstry, Robert T Shultz, Joseph Piven, Quyen Dang, Martin Styner, Juan Carlos Prieto
{"title":"IcoConv : Explainable brain cortical surface analysis for ASD classification.","authors":"Ugo Rodriguez, Tahya Deddah, Sun Hyung Kim, Mark Shen, Kelly N Botteron, D Louis Collins, Stephen R Dager, Annette M Estes, Alan C Evans, Heather C Hazlett, Robert McKinstry, Robert T Shultz, Joseph Piven, Quyen Dang, Martin Styner, Juan Carlos Prieto","doi":"10.1007/978-3-031-46914-5_20","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.</p>","PeriodicalId":516531,"journal":{"name":"Shape in medical imaging : International Workshop, ShapeMI 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ShapeMI (Workshop) (2023 : Vancouver, B.C.)","volume":"14350 ","pages":"248-258"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shape in medical imaging : International Workshop, ShapeMI 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ShapeMI (Workshop) (2023 : Vancouver, B.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-46914-5_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

IcoConv : 用于 ASD 分类的可解释大脑皮层表面分析。
在本研究中,我们介绍了一种分析和解读三维形状的新方法,尤其适用于神经科学研究。我们的方法从三维物体的不同视点捕捉二维视角。这些视角随后使用二维卷积神经网络(CNN)进行分析,CNN 采用定制的汇集机制进行了独特的修改。我们试图通过一项涉及自闭症谱系障碍(ASD)高风险受试者的二元分类任务来评估我们方法的有效性。该任务需要区分自闭症高风险阳性病例和高风险阴性病例。为此,我们采用了大脑皮层厚度、表面积和轴外大脑脊柱测量等大脑属性。然后,我们将这些测量值映射到一个球体的表面,随后通过我们定制的方法对其进行分析。我们方法的一个显著特点是利用二十面体卷积算子汇集来自不同视角的数据。该算子有助于在相邻视图之间有效共享信息。我们的方法的一个重要贡献是生成了基于梯度的可解释性图,这些图可以在大脑表面可视化。从这些可解释性图像中得出的见解与之前的研究成果相吻合,尤其是那些详细描述受 ASD 典型影响的大脑区域的研究成果。因此,我们的创新方法证实了人们对这种疾病的已知理解,同时也可能揭示出新的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信