CD5L induces inflammation and survival in RA-FLS through ERK1/2 MAPK pathway.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2024-02-29 DOI:10.1080/08916934.2023.2201412
Huiqing Yang, Yan Luo, Xiaofei Lai
{"title":"CD5L induces inflammation and survival in RA-FLS through ERK1/2 MAPK pathway.","authors":"Huiqing Yang, Yan Luo, Xiaofei Lai","doi":"10.1080/08916934.2023.2201412","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it.</p><p><strong>Methods: </strong>Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation.</p><p><strong>Results: </strong>CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS.</p><p><strong>Conclusion: </strong>CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2023.2201412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it.

Methods: Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation.

Results: CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS.

Conclusion: CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.

CD5L 通过 ERK1/2 MAPK 通路诱导 RA-FLS 的炎症和存活。
目的探讨CD5样分子(CD5L)对类风湿性关节炎(RA)成纤维细胞样滑膜细胞(RA-FLS)的影响及其相关分子机制:方法:使用重组蛋白 CD5L 刺激培养的 RA-FLS 细胞。方法:采用重组蛋白 CD5L 刺激培养的 RA-FLS 细胞,通过实时聚合酶链反应(RT-PCR)和酶联免疫吸附试验(ELISA)测定炎症相关细胞因子。信号分子和细胞凋亡相关分子采用免疫印迹法(WB)检测,细胞计数试剂盒-8(CCK-8)用于检测细胞增殖:结果:CD5L能增加IL-6、IL-8和TNF-α的产生,信号通路抑制剂能抑制这种效应。同时,CD5L激活ERK1/2 MAPK信号,抑制剂处理可减弱磷酸化强度。此外,CD5L还能增强RA-FLS的增殖能力:结论:CD5L可通过ERK1/2 MAPK途径诱导RA-FLS产生炎性细胞因子,并提高细胞存活率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信