{"title":"Ramsey Problems for Monotone Paths in Graphs and Hypergraphs","authors":"Lior Gishboliner, Zhihan Jin, Benny Sudakov","doi":"10.1007/s00493-024-00082-7","DOIUrl":null,"url":null,"abstract":"<p>The study of ordered Ramsey numbers of monotone paths for graphs and hypergraphs has a long history, going back to the celebrated work by Erdős and Szekeres in the early days of Ramsey theory. In this paper we obtain several results in this area, establishing two conjectures of Mubayi and Suk and improving bounds due to Balko, Cibulka, Král and Kynčl. For example, in the graph case, we show that the ordered Ramsey number for a fixed clique versus a fixed power of a monotone path of length <i>n</i> is always linear in <i>n</i>. Also, in the 3-graph case, we show that the ordered Ramsey number for a fixed clique versus a tight monotone path of length <i>n</i> is always polynomial in <i>n</i>. As a by-product, we also obtain a color-monotone version of the well-known Canonical Ramsey Theorem of Erdős and Rado, which could be of independent interest.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00082-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of ordered Ramsey numbers of monotone paths for graphs and hypergraphs has a long history, going back to the celebrated work by Erdős and Szekeres in the early days of Ramsey theory. In this paper we obtain several results in this area, establishing two conjectures of Mubayi and Suk and improving bounds due to Balko, Cibulka, Král and Kynčl. For example, in the graph case, we show that the ordered Ramsey number for a fixed clique versus a fixed power of a monotone path of length n is always linear in n. Also, in the 3-graph case, we show that the ordered Ramsey number for a fixed clique versus a tight monotone path of length n is always polynomial in n. As a by-product, we also obtain a color-monotone version of the well-known Canonical Ramsey Theorem of Erdős and Rado, which could be of independent interest.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.