{"title":"Unveiling challenges in Mendelian randomization for gene–environment interaction","authors":"Malka Gorfine, Conghui Qu, Ulrike Peters, Li Hsu","doi":"10.1002/gepi.22552","DOIUrl":null,"url":null,"abstract":"<p>Gene–environment (GxE) interactions play a crucial role in understanding the complex etiology of various traits, but assessing them using observational data can be challenging due to unmeasured confounders for lifestyle and environmental risk factors. Mendelian randomization (MR) has emerged as a valuable method for assessing causal relationships based on observational data. This approach utilizes genetic variants as instrumental variables (IVs) with the aim of providing a valid statistical test and estimation of causal effects in the presence of unmeasured confounders. MR has gained substantial popularity in recent years largely due to the success of genome-wide association studies. Many methods have been developed for MR; however, limited work has been done on evaluating GxE interaction. In this paper, we focus on two primary IV approaches: the two-stage predictor substitution and the two-stage residual inclusion, and extend them to accommodate GxE interaction under both the linear and logistic regression models for continuous and binary outcomes, respectively. Comprehensive simulation study and analytical derivations reveal that resolving the linear regression model is relatively straightforward. In contrast, the logistic regression model presents a considerably more intricate challenge, which demands additional effort.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 4","pages":"164-189"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22552","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene–environment (GxE) interactions play a crucial role in understanding the complex etiology of various traits, but assessing them using observational data can be challenging due to unmeasured confounders for lifestyle and environmental risk factors. Mendelian randomization (MR) has emerged as a valuable method for assessing causal relationships based on observational data. This approach utilizes genetic variants as instrumental variables (IVs) with the aim of providing a valid statistical test and estimation of causal effects in the presence of unmeasured confounders. MR has gained substantial popularity in recent years largely due to the success of genome-wide association studies. Many methods have been developed for MR; however, limited work has been done on evaluating GxE interaction. In this paper, we focus on two primary IV approaches: the two-stage predictor substitution and the two-stage residual inclusion, and extend them to accommodate GxE interaction under both the linear and logistic regression models for continuous and binary outcomes, respectively. Comprehensive simulation study and analytical derivations reveal that resolving the linear regression model is relatively straightforward. In contrast, the logistic regression model presents a considerably more intricate challenge, which demands additional effort.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.