Separation of variables in the Hamilton–Jacobi equation for geodesics in two and three dimensions

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. O. Katanaev
{"title":"Separation of variables in the Hamilton–Jacobi equation for geodesics in two and three dimensions","authors":"M. O. Katanaev","doi":"10.1134/S0040577924020065","DOIUrl":null,"url":null,"abstract":"<p> On (pseudo)Riemannian manifolds of two and three dimensions, we list all metrics that admit a complete separation of variables in the Hamilton–Jacobi equation for geodesics. There are three different classes of separable metrics on two-dimensional surfaces. Three-dimensional manifolds admit six classes of separable metrics. Within each class, metrics are related by canonical transformations and a nondegenerate transformation of parameters that does not depend on coordinates. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924020065","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

On (pseudo)Riemannian manifolds of two and three dimensions, we list all metrics that admit a complete separation of variables in the Hamilton–Jacobi equation for geodesics. There are three different classes of separable metrics on two-dimensional surfaces. Three-dimensional manifolds admit six classes of separable metrics. Within each class, metrics are related by canonical transformations and a nondegenerate transformation of parameters that does not depend on coordinates.

二维和三维大地线汉密尔顿-雅可比方程中的变量分离
摘要 在二维和三维的(伪)黎曼流形上,我们列出了在汉密尔顿-雅可比方程中允许完全分离测地线变量的所有度量。二维曲面上有三类不同的可分离度量。三维流形有六类可分离度量。在每一类中,度量都通过典型变换和不依赖于坐标的参数非enerate 变换相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信