The structure of shift-invariant subspaces of Sobolev spaces

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Aksentijević, S. Aleksić, S. Pilipović
{"title":"The structure of shift-invariant subspaces of Sobolev spaces","authors":"A. Aksentijević,&nbsp;S. Aleksić,&nbsp;S. Pilipović","doi":"10.1134/S0040577924020016","DOIUrl":null,"url":null,"abstract":"<p> We analyze shift-invariant spaces <span>\\(V_s\\)</span>, subspaces of Sobolev spaces <span>\\(H^s(\\mathbb{R}^n)\\)</span>, <span>\\(s\\in\\mathbb{R}\\)</span>, generated by a set of generators <span>\\(\\varphi_i\\)</span>, <span>\\(i\\in I\\)</span>, with <span>\\(I\\)</span> at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe <span>\\(V_s\\)</span> in terms of Gramians and their direct sum decompositions. We show that <span>\\(f\\in\\mathcal D_{L^2}'(\\mathbb{R}^n)\\)</span> belongs to <span>\\(V_s\\)</span> if and only if its Fourier transform has the form <span>\\(\\hat f=\\sum_{i\\in I}f_ig_i\\)</span>, <span>\\(f_i=\\hat\\varphi_i\\in L_s^2(\\mathbb{R}^n)\\)</span>, <span>\\(\\{\\varphi_i(\\,\\cdot+k)\\colon k\\in\\mathbb Z^n,\\,i\\in I\\}\\)</span> is a frame, and <span>\\(g_i=\\sum_{k\\in\\mathbb{Z}^n}a_k^ie^{-2\\pi\\sqrt{-1}\\,\\langle\\,{\\cdot}\\,,k\\rangle}\\)</span>, with <span>\\((a^i_k)_{k\\in\\mathbb{Z}^n}\\in\\ell^2(\\mathbb{Z}^n)\\)</span>. Moreover, connecting two different approaches to shift-invariant spaces <span>\\(V_s\\)</span> and <span>\\(\\mathcal V^2_s\\)</span>, <span>\\(s&gt;0\\)</span>, under the assumption that a finite number of generators belongs to <span>\\(H^s\\cap L^2_s\\)</span>, we give the characterization of elements in <span>\\(V_s\\)</span> through the expansions with coefficients in <span>\\(\\ell_s^2(\\mathbb{Z}^n)\\)</span>. The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of <span>\\(\\mathcal S(\\mathbb R^n)\\)</span>. We then show that <span>\\(\\bigcap_{s&gt;0}V_s\\)</span> is the space consisting of functions whose Fourier transforms equal products of functions in <span>\\(\\mathcal S(\\mathbb R^n)\\)</span> and periodic smooth functions. The appropriate assertion is obtained for <span>\\(\\bigcup_{s&gt;0}V_{-s}\\)</span>. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924020016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze shift-invariant spaces \(V_s\), subspaces of Sobolev spaces \(H^s(\mathbb{R}^n)\), \(s\in\mathbb{R}\), generated by a set of generators \(\varphi_i\), \(i\in I\), with \(I\) at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe \(V_s\) in terms of Gramians and their direct sum decompositions. We show that \(f\in\mathcal D_{L^2}'(\mathbb{R}^n)\) belongs to \(V_s\) if and only if its Fourier transform has the form \(\hat f=\sum_{i\in I}f_ig_i\), \(f_i=\hat\varphi_i\in L_s^2(\mathbb{R}^n)\), \(\{\varphi_i(\,\cdot+k)\colon k\in\mathbb Z^n,\,i\in I\}\) is a frame, and \(g_i=\sum_{k\in\mathbb{Z}^n}a_k^ie^{-2\pi\sqrt{-1}\,\langle\,{\cdot}\,,k\rangle}\), with \((a^i_k)_{k\in\mathbb{Z}^n}\in\ell^2(\mathbb{Z}^n)\). Moreover, connecting two different approaches to shift-invariant spaces \(V_s\) and \(\mathcal V^2_s\), \(s>0\), under the assumption that a finite number of generators belongs to \(H^s\cap L^2_s\), we give the characterization of elements in \(V_s\) through the expansions with coefficients in \(\ell_s^2(\mathbb{Z}^n)\). The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of \(\mathcal S(\mathbb R^n)\). We then show that \(\bigcap_{s>0}V_s\) is the space consisting of functions whose Fourier transforms equal products of functions in \(\mathcal S(\mathbb R^n)\) and periodic smooth functions. The appropriate assertion is obtained for \(\bigcup_{s>0}V_{-s}\).

索波列夫空间的移变量子空间结构
Abstract 我们通过使用范围函数分析了由一组生成器\(\varphi_i\), \(i\in I\) 产生的移位不变空间(Sobolev 空间\(H^s(\mathbb{R}^n)\), \(s\in\mathbb{R}\)的子空间,其中\(I\)最多是可数的,并描述了贝塞尔序列、框架和这类空间的里兹基。我们还用Gramians及其直接和分解来描述\(V_s\)。我们证明当且仅当它的傅里叶变换具有\(\hat f=\sum_{i\in I}f_ig_i\) 形式时,\(f/in/mathcal D_{L^2}'(\mathbb{R}^n)\) 属于\(V_s\)、\(f_i=\hat\varphi_i\in L_s^2(\mathbb{R}^n)\), \(\{\varphi_i(\,\是一个框架,并且(g_i=sum_{k\in\mathbb{Z}^n}a_k^ie^{-2\pi\sqrt{-1}\、\langle,{\cdot}\,,k\rangle}\), with \((a^i_k)_{k\in\mathbb{Z}^n}\inell^2(\mathbb{Z}^n)\).此外,在有限数量的生成器属于\(H^s\cap L^2_s\)的假设下,我们将两种不同的方法连接到移变空间\(V_s\)和\(\mathcal V^2_s\)、\(s>0\),通过在\(\ell_s^2(\mathbb{Z}^n)\)中的系数展开,给出了\(V_s\)中元素的特征。在生成器是 \(\mathcal S(\mathbb R^n)\)的元素的情况下,对于这些空间的交集及其对偶,相应的断言也成立。然后我们证明\(\bigcap_{s>0}V_s\) 是由函数组成的空间,这些函数的傅里叶变换等于\(\mathcal S(\mathbb R^n)\)中的函数和周期性平滑函数的乘积。对于 \(\bigcup_{s>0}V_{-s}\) 可以得到相应的断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信