Solution of the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives in statistical mechanics

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Z. Korichi, A. Souigat, R. Bekhouche, M. T. Meftah
{"title":"Solution of the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives in statistical mechanics","authors":"Z. Korichi,&nbsp;A. Souigat,&nbsp;R. Bekhouche,&nbsp;M. T. Meftah","doi":"10.1134/S0040577924020107","DOIUrl":null,"url":null,"abstract":"<p> We solve the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives for systems exhibiting noninteger power laws in their Hamiltonians. Based on the fractional Liouville equation, we calculate the density function (DF) of a classical ideal gas. If the Riemann–Liouville derivative is used, the DF is a function depending on both the momentum <span>\\(p\\)</span> and the coordinate <span>\\(q\\)</span>, but if the derivative in the Caputo sense is used, the DF is a constant independent of <span>\\(p\\)</span> and <span>\\(q\\)</span>. We also study a gas consisting of <span>\\(N\\)</span> fractional oscillators in one-dimensional space and obtain that the DF of the system depends on the type of the derivative. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924020107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We solve the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives for systems exhibiting noninteger power laws in their Hamiltonians. Based on the fractional Liouville equation, we calculate the density function (DF) of a classical ideal gas. If the Riemann–Liouville derivative is used, the DF is a function depending on both the momentum \(p\) and the coordinate \(q\), but if the derivative in the Caputo sense is used, the DF is a constant independent of \(p\) and \(q\). We also study a gas consisting of \(N\) fractional oscillators in one-dimensional space and obtain that the DF of the system depends on the type of the derivative.

利用统计力学中的黎曼-利乌维尔和卡普托导数求解分数利乌维尔方程
摘要 我们利用黎曼-刘维尔导数和卡普托导数求解分数刘维尔方程,以解决哈密顿中呈现非整数幂律的系统问题。基于分数柳维尔方程,我们计算了经典理想气体的密度函数(DF)。如果使用黎曼-柳维尔导数,密度函数是一个取决于动量(p)和坐标(q)的函数,但如果使用卡普托导数,密度函数是一个与(p)和(q)无关的常数。我们还研究了由一维空间中的\(N\)分数振荡器组成的气体,并得出系统的DF取决于导数的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信