{"title":"Non-degenerate minimal submanifolds as energy concentration sets: A variational approach","authors":"Guido De Philippis, Alessandro Pigati","doi":"10.1002/cpa.22193","DOIUrl":null,"url":null,"abstract":"<p>We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg–Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet–Jerrard–Sternberg. The same proof applies also to the <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$U(1)$</annotation>\n </semantics></math>-Yang–Mills–Higgs and to the Allen–Cahn–Hilliard energies. While for the latter energies gluing methods are also effective, in general dimension our proof is by now the only available one in the Ginzburg–Landau setting, where the weaker energy concentration is the main technical difficulty.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg–Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet–Jerrard–Sternberg. The same proof applies also to the -Yang–Mills–Higgs and to the Allen–Cahn–Hilliard energies. While for the latter energies gluing methods are also effective, in general dimension our proof is by now the only available one in the Ginzburg–Landau setting, where the weaker energy concentration is the main technical difficulty.