Diego Della Lunga, Kris R. Brye, Trenton L. Roberts, Jonathan Brye, Michelle Evans-White, Daniel J. Lessner, Christopher G. Henry
{"title":"Water regime and fertilizer-phosphorus source effects on greenhouse gas emissions from rice","authors":"Diego Della Lunga, Kris R. Brye, Trenton L. Roberts, Jonathan Brye, Michelle Evans-White, Daniel J. Lessner, Christopher G. Henry","doi":"10.1002/agg2.20482","DOIUrl":null,"url":null,"abstract":"<p>Greenhouse gas (GHG) emissions from rice (<i>Oryza sativa</i>) systems have been correlated to water management practice, but to date, no study has directly evaluated three main GHGs (i.e., methane [CH<sub>4</sub>], nitrous oxide [N<sub>2</sub>O], and carbon dioxide [CO<sub>2</sub>]) under flood- and furrow-irrigated conditions at the same time as affected by various fertilizer-phosphorus (P) sources, in particular the reportedly slow-release struvite-P source. Therefore, the objective of this study was to evaluate the effect of water regime (flooded and furrow-irrigated) and fertilizer-P source (diammonium phosphate, chemically precipitated struvite, electrochemically precipitated struvite [ECST], triple superphosphate, and an unamended control) on GHG emissions and two- and three-gas global warming potentials (GWP* and GWP, respectively) in the greenhouse. Methane emissions were 10 times greater (<i>p</i> < 0.05) under flooded (29.4 kg CH<sub>4</sub> ha<sup>−1</sup> season<sup>−1</sup>) than under furrow-irrigated conditions (2.9 kg CH<sub>4</sub> ha<sup>−1</sup> season<sup>−1</sup>), and four times lower (<i>p</i> < 0.05) with ECST (3.4 kg CH<sub>4</sub> ha<sup>−1</sup> season<sup>−1</sup>) than other fertilizer-P sources, while CO<sub>2</sub> emissions were three times greater (<i>p</i> < 0.05) under furrow-irrigated (23,428 kg CO<sub>2</sub> ha<sup>−1</sup> season<sup>−1</sup>) than under flooded (8290 kg CO<sub>2</sub> ha<sup>−1</sup> season<sup>−1</sup>) conditions. The GWP* under furrow-irrigated conditions was almost 40% lower (<i>p</i> < 0.05) than under flooded conditions. Although N<sub>2</sub>O emissions were unaffected by fertilizer-P source, the N<sub>2</sub>O contribution to GWP* was more than 80% under furrow-irrigated conditions. Flood- and furrow-irrigated water regimes require diversified approaches in GHG mitigation, where the best management for ECST needs to be more fully evaluated.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20482","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Greenhouse gas (GHG) emissions from rice (Oryza sativa) systems have been correlated to water management practice, but to date, no study has directly evaluated three main GHGs (i.e., methane [CH4], nitrous oxide [N2O], and carbon dioxide [CO2]) under flood- and furrow-irrigated conditions at the same time as affected by various fertilizer-phosphorus (P) sources, in particular the reportedly slow-release struvite-P source. Therefore, the objective of this study was to evaluate the effect of water regime (flooded and furrow-irrigated) and fertilizer-P source (diammonium phosphate, chemically precipitated struvite, electrochemically precipitated struvite [ECST], triple superphosphate, and an unamended control) on GHG emissions and two- and three-gas global warming potentials (GWP* and GWP, respectively) in the greenhouse. Methane emissions were 10 times greater (p < 0.05) under flooded (29.4 kg CH4 ha−1 season−1) than under furrow-irrigated conditions (2.9 kg CH4 ha−1 season−1), and four times lower (p < 0.05) with ECST (3.4 kg CH4 ha−1 season−1) than other fertilizer-P sources, while CO2 emissions were three times greater (p < 0.05) under furrow-irrigated (23,428 kg CO2 ha−1 season−1) than under flooded (8290 kg CO2 ha−1 season−1) conditions. The GWP* under furrow-irrigated conditions was almost 40% lower (p < 0.05) than under flooded conditions. Although N2O emissions were unaffected by fertilizer-P source, the N2O contribution to GWP* was more than 80% under furrow-irrigated conditions. Flood- and furrow-irrigated water regimes require diversified approaches in GHG mitigation, where the best management for ECST needs to be more fully evaluated.