Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models

IF 2.9 Q2 TOXICOLOGY
Lukman K. Akinola , Adamu Uzairu , Gideon A. Shallangwa , Stephen E. Abechi , Abdullahi B. Umar
{"title":"Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models","authors":"Lukman K. Akinola ,&nbsp;Adamu Uzairu ,&nbsp;Gideon A. Shallangwa ,&nbsp;Stephen E. Abechi ,&nbsp;Abdullahi B. Umar","doi":"10.1016/j.crtox.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><p>Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.</p></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"6 ","pages":"Article 100158"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666027X24000112/pdfft?md5=aaea4139aa15cb5789aef7803b3c55c3&pid=1-s2.0-S2666027X24000112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.

Abstract Image

利用基于分类的定量结构-活性关系模型识别羟基多氯联苯中的雌激素受体激动剂
在环境毒物中识别雌激素受体(ER)激动剂对于评估毒物对人类健康的潜在影响至关重要。利用二维自相关描述符作为预测变量,建立了两个二元逻辑回归模型,以识别羟基多氯联苯(OH-PCB)中的活性雌激素受体激动剂。两个模型对训练集化合物进行分类后,ERα 数据集的准确度、灵敏度和特异度分别为 95.9%、93.9% 和 97.6%,ERβ 数据集的准确度、灵敏度和特异度分别为 91.9%、90.9% 和 92.7%。使用训练集数据构建的 ROC 曲线下面积分别为 0.985 和 0.987。模型 I 和模型 II 预测的测试集化合物正确分类率分别为 84.0% 和 88.0%,交叉验证集化合物正确分类率分别为 89.8% 和 85.8%。本文提出的两个基于分类的 QSAR 模型被认为是在 OH-PCB 同系物中快速鉴定 ERα 和 ERβ 激动剂的可靠方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Toxicology
Current Research in Toxicology Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
4.70
自引率
3.00%
发文量
33
审稿时长
82 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信