Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG.

Psychophysiology Pub Date : 2024-07-01 Epub Date: 2024-02-28 DOI:10.1111/psyp.14553
Markus Ullsperger
{"title":"Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG.","authors":"Markus Ullsperger","doi":"10.1111/psyp.14553","DOIUrl":null,"url":null,"abstract":"<p><p>With the discovery of event-related potentials elicited by errors more than 30 years ago, a new avenue of research on performance monitoring, cognitive control, and decision making emerged. Since then, the field has developed and expanded fulminantly. After a brief overview on the EEG correlates of performance monitoring, this article reviews recent advancements based on single-trial analyses using independent component analysis, multiple regression, and multivariate pattern classification. Given the close interconnection between performance monitoring and reinforcement learning, computational modeling and model-based EEG analyses have made a particularly strong impact. The reviewed findings demonstrate that error- and feedback-related EEG dynamics represent variables reflecting how performance-monitoring signals are weighted and transformed into an adaptation signal that guides future decisions and actions. The model-based single-trial analysis approach goes far beyond conventional peak-and-trough analyses of event-related potentials and enables testing mechanistic theories of performance monitoring, cognitive control, and decision making.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/psyp.14553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the discovery of event-related potentials elicited by errors more than 30 years ago, a new avenue of research on performance monitoring, cognitive control, and decision making emerged. Since then, the field has developed and expanded fulminantly. After a brief overview on the EEG correlates of performance monitoring, this article reviews recent advancements based on single-trial analyses using independent component analysis, multiple regression, and multivariate pattern classification. Given the close interconnection between performance monitoring and reinforcement learning, computational modeling and model-based EEG analyses have made a particularly strong impact. The reviewed findings demonstrate that error- and feedback-related EEG dynamics represent variables reflecting how performance-monitoring signals are weighted and transformed into an adaptation signal that guides future decisions and actions. The model-based single-trial analysis approach goes far beyond conventional peak-and-trough analyses of event-related potentials and enables testing mechanistic theories of performance monitoring, cognitive control, and decision making.

超越波峰和波谷:脑电图中的多重性能监测信号。
30 多年前,随着错误引起的事件相关电位的发现,出现了一条研究表现监测、认知控制和决策的新途径。从那时起,这一领域得到了迅猛的发展和壮大。本文在简要概述表现监测的脑电图相关性后,回顾了基于独立成分分析、多元回归和多变量模式分类的单次试验分析的最新进展。鉴于成绩监控与强化学习之间的密切联系,计算建模和基于模型的脑电图分析产生了特别大的影响。综述结果表明,与错误和反馈相关的脑电图动态代表了一些变量,反映了性能监控信号如何加权并转化为适应信号,从而指导未来的决策和行动。基于模型的单次试验分析方法远远超越了对事件相关电位的传统峰谷分析,能够检验成绩监测、认知控制和决策制定的机理理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信