Xiaohui Sun , Ziyi Chen , Fan Chen , Silin Wu , Wuyu Zhang , Yuansheng Peng , Guilin Chen
{"title":"Enhanced drainage performance of PVF-wicking geosynthetics: Development and experimental assessment","authors":"Xiaohui Sun , Ziyi Chen , Fan Chen , Silin Wu , Wuyu Zhang , Yuansheng Peng , Guilin Chen","doi":"10.1016/j.geotexmem.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>An enhanced geosynthetic material, PVF-wicking geosynthetic (PWG), was developed to improve the performance of the wicking geosynthetic product family, e.g., the wicking geotextile (WG). The PWG was made by coating deep-grooved wicking yarns and reinforcement with the layered polyvinyl alcohol formaldehyde (PVF) high-absorbent materials. The drainage performance of PWG was assessed through beaker drainage tests and soil column tests. The results of the beaker drainage test and SEM images indicate that PVF does not obstruct the deep-grooved yarns. It is found that, by facilitating efficient water absorption, storage, and transfer as a transit layer between the subgrade and wicking yarns, PVF plays a crucial role in enhancing the drainage capabilities of the geosynthetic material. PWG outperforms WG in terms of drainage efficiency under both static and cyclic loading conditions. The mechanism of the drainage improvement by PWG under cyclic loading is that the excess pore pressure within the PVF layer accelerates the water transfer from the pores of the PVF into the grooves of yarns. PWG, included with reinforcement, exhibited comparable interface characteristics to WG, with the potential to meet the requirements of soil stabilization. The remarkable drainage efficiency of PWG underscores its potential for practical applications.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 562-573"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000153","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An enhanced geosynthetic material, PVF-wicking geosynthetic (PWG), was developed to improve the performance of the wicking geosynthetic product family, e.g., the wicking geotextile (WG). The PWG was made by coating deep-grooved wicking yarns and reinforcement with the layered polyvinyl alcohol formaldehyde (PVF) high-absorbent materials. The drainage performance of PWG was assessed through beaker drainage tests and soil column tests. The results of the beaker drainage test and SEM images indicate that PVF does not obstruct the deep-grooved yarns. It is found that, by facilitating efficient water absorption, storage, and transfer as a transit layer between the subgrade and wicking yarns, PVF plays a crucial role in enhancing the drainage capabilities of the geosynthetic material. PWG outperforms WG in terms of drainage efficiency under both static and cyclic loading conditions. The mechanism of the drainage improvement by PWG under cyclic loading is that the excess pore pressure within the PVF layer accelerates the water transfer from the pores of the PVF into the grooves of yarns. PWG, included with reinforcement, exhibited comparable interface characteristics to WG, with the potential to meet the requirements of soil stabilization. The remarkable drainage efficiency of PWG underscores its potential for practical applications.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.