Orietta Nicolis, Luis Delgado, Billy Peralta, Mailiu Díaz, Marcello Chiodi
{"title":"Space-time clustering of seismic events in Chile using ST-DBSCAN-EV algorithm","authors":"Orietta Nicolis, Luis Delgado, Billy Peralta, Mailiu Díaz, Marcello Chiodi","doi":"10.1007/s10651-023-00594-3","DOIUrl":null,"url":null,"abstract":"<p>Chile is one of the most seismic countries in the world especially due to the subduction of the Nazca plate under the South America plate along the Chilean cost. Normally, the spatial distribution of seismic events tends to form spatial and temporal clusters around the main event including both precursor and aftershock events. However, it is very difficult to identify whether an event is a precursor, a main event or an aftershock. In the literature, only some large earthquakes are well described but it does not exist an automatic method to classify them. In this work, we propose a new density based clustering method, called ST-DBSCAN-EV (Space-time DBSCAN with <i>Epsilon</i> Variable), which allows the <i>Epsilon</i> parameter (the radius) to vary depending on the density of the points. The results of the ST-DBSCAN-EV are validated on three important earthquakes with magnitude greater than 8.0 Mw occurred in Chile in the last 20 years, by carrying out a series of experiments considering different combinations of parameters. A comparison with some traditional clustering techniques such as the DBSCAN, ST-DBSCAN, and the <i>K-means</i> has been implemented for assessing the performance of the proposed method. Almost in all cases ST-DBSCAN-EV outperformed traditional ones by providing an F1-Score metric higher than 0.8. Finally, the results of classification are compared with a declustering method.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"264 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-023-00594-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chile is one of the most seismic countries in the world especially due to the subduction of the Nazca plate under the South America plate along the Chilean cost. Normally, the spatial distribution of seismic events tends to form spatial and temporal clusters around the main event including both precursor and aftershock events. However, it is very difficult to identify whether an event is a precursor, a main event or an aftershock. In the literature, only some large earthquakes are well described but it does not exist an automatic method to classify them. In this work, we propose a new density based clustering method, called ST-DBSCAN-EV (Space-time DBSCAN with Epsilon Variable), which allows the Epsilon parameter (the radius) to vary depending on the density of the points. The results of the ST-DBSCAN-EV are validated on three important earthquakes with magnitude greater than 8.0 Mw occurred in Chile in the last 20 years, by carrying out a series of experiments considering different combinations of parameters. A comparison with some traditional clustering techniques such as the DBSCAN, ST-DBSCAN, and the K-means has been implemented for assessing the performance of the proposed method. Almost in all cases ST-DBSCAN-EV outperformed traditional ones by providing an F1-Score metric higher than 0.8. Finally, the results of classification are compared with a declustering method.
期刊介绍:
Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues.
Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics.
Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.