Effect of Stretch-forming on Hydrogen Diffusion Behavior in High-strength Steel Sheet

IF 1.6 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Hayato Nishimura, Saya Ajito, Tomohiko Hojo, Motomichi Koyama, Ken-ichi Fujita, Yuki Shibayama, Hiroshi Kakinuma, Eiji Akiyama
{"title":"Effect of Stretch-forming on Hydrogen Diffusion Behavior in High-strength Steel Sheet","authors":"Hayato Nishimura, Saya Ajito, Tomohiko Hojo, Motomichi Koyama, Ken-ichi Fujita, Yuki Shibayama, Hiroshi Kakinuma, Eiji Akiyama","doi":"10.2355/isijinternational.isijint-2023-149","DOIUrl":null,"url":null,"abstract":"</p><p>The hydrogen diffusion behavior in a tempered martensitic steel sheet with 1-GPa grade tensile strength was investigated using a newly developed hydrogen visualization technique with an Ir complex, whose color changes from yellow to orange due to its reaction with hydrogen. Hydrogen permeation through the steel sheet could be monitored via the color change of the Ir complex. Furthermore, the breakthrough time of hydrogen through the specimen could be qualitatively evaluated based on changes in the brightness of the Ir complex. Additionally, this hydrogen visualization technique was applied to a stretch-formed steel sheet using a hemispherical punch to simulate the press-forming of automotive structural components. The hydrogen breakthrough time around the top of the specimen increased and then decreased as the distance from the top increased. Based on the plastic strain distribution of the specimen calculated using the finite element method, the hydrogen breakthrough time increased with the plastic strain. The introduction of plastic strain decreased the hydrogen diffusion coefficient due to the introduction of dislocations acting as hydrogen trap sites, thus increasing the hydrogen breakthrough time.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/isijinternational/64/4/64_ISIJINT-2023-149/figure/64_ISIJINT-2023-149.jpg\"/>\n<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":"52 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2023-149","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen diffusion behavior in a tempered martensitic steel sheet with 1-GPa grade tensile strength was investigated using a newly developed hydrogen visualization technique with an Ir complex, whose color changes from yellow to orange due to its reaction with hydrogen. Hydrogen permeation through the steel sheet could be monitored via the color change of the Ir complex. Furthermore, the breakthrough time of hydrogen through the specimen could be qualitatively evaluated based on changes in the brightness of the Ir complex. Additionally, this hydrogen visualization technique was applied to a stretch-formed steel sheet using a hemispherical punch to simulate the press-forming of automotive structural components. The hydrogen breakthrough time around the top of the specimen increased and then decreased as the distance from the top increased. Based on the plastic strain distribution of the specimen calculated using the finite element method, the hydrogen breakthrough time increased with the plastic strain. The introduction of plastic strain decreased the hydrogen diffusion coefficient due to the introduction of dislocations acting as hydrogen trap sites, thus increasing the hydrogen breakthrough time.

Abstract Image Fullsize Image
拉伸成形对高强度钢板氢扩散行为的影响
使用新开发的氢可视化技术研究了抗拉强度为 1GPa 级的回火马氏体钢板中的氢扩散行为,该技术使用了一种铱络合物,由于铱络合物与氢发生反应,其颜色由黄色变为橙色。通过铱络合物的颜色变化可以监测氢气在钢板中的渗透情况。此外,还可以根据铱络合物亮度的变化来定性评估氢气通过试样的时间。此外,这种氢可视化技术还应用于使用半球形冲头拉伸成型的钢板,以模拟汽车结构部件的冲压成型。试样顶部周围的氢突破时间随着距离顶部距离的增加而增加,然后减少。根据有限元法计算的试样塑性应变分布,氢突破时间随塑性应变的增加而增加。塑性应变的引入降低了氢扩散系数,这是因为引入了位错作为氢捕获点,从而延长了氢突破时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Isij International
Isij International 工程技术-冶金工程
CiteScore
3.40
自引率
16.70%
发文量
268
审稿时长
2.6 months
期刊介绍: The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信