Local MFS Matrix Decomposition Algorithms for Elliptic BVPs in Annuli

IF 1.9 4区 数学 Q1 MATHEMATICS
C.S. Chen,Andreas Karageorghis, Min Lei
{"title":"Local MFS Matrix Decomposition Algorithms for Elliptic BVPs in Annuli","authors":"C.S. Chen,Andreas Karageorghis, Min Lei","doi":"10.4208/nmtma.oa-2023-0045","DOIUrl":null,"url":null,"abstract":"We apply the local method of fundamental solutions (LMFS) to boundary\nvalue problems (BVPs) for the Laplace and homogeneous biharmonic equations in\nannuli. By appropriately choosing the collocation points, the LMFS discretization\nyields sparse block circulant system matrices. As a result, matrix decomposition\nalgorithms (MDAs) and fast Fourier transforms (FFTs) can be used for the solution\nof the systems resulting in considerable savings in both computational time and\nstorage requirements. The accuracy of the method and its ability to solve large scale\nproblems are demonstrated by applying it to several numerical experiments.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"80 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2023-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We apply the local method of fundamental solutions (LMFS) to boundary value problems (BVPs) for the Laplace and homogeneous biharmonic equations in annuli. By appropriately choosing the collocation points, the LMFS discretization yields sparse block circulant system matrices. As a result, matrix decomposition algorithms (MDAs) and fast Fourier transforms (FFTs) can be used for the solution of the systems resulting in considerable savings in both computational time and storage requirements. The accuracy of the method and its ability to solve large scale problems are demonstrated by applying it to several numerical experiments.
环形椭圆BVP的局部MFS矩阵分解算法
我们将基本解局部法(LMFS)应用于拉普拉斯方程和同质双谐波方程的边界值问题(BVPs)。通过适当选择配位点,LMFS离散化得到稀疏的分块环形系统矩阵。因此,可以使用矩阵分解算法(MDA)和快速傅立叶变换(FFT)来求解系统,从而大大节省了计算时间和存储需求。通过将该方法应用于几个数值实验,证明了该方法的准确性及其解决大型问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信