Combining field experiments under an agrivoltaic system and a kinetic fruit model to understand the impact of shading on apple carbohydrate metabolism and quality
Perrine Juillion, Gerardo Lopez, Damien Fumey, Vincent Lesniak, Michel Génard, Gilles Vercambre
{"title":"Combining field experiments under an agrivoltaic system and a kinetic fruit model to understand the impact of shading on apple carbohydrate metabolism and quality","authors":"Perrine Juillion, Gerardo Lopez, Damien Fumey, Vincent Lesniak, Michel Génard, Gilles Vercambre","doi":"10.1007/s10457-024-00965-0","DOIUrl":null,"url":null,"abstract":"<p>Shading with dynamic agrivoltaic (AV) could be a solution to mitigate the effects of climate change but their impact on the fruit quality has not been reported. Apple metabolism and quality were evaluated in a dynamic AV system in a mature ‘Golden Delicious’ orchard in the south of France (2019–2021). Trees were exposed to three different light treatments: maximal shading all day ‘AV max’, morning shading ‘AV morning’, and afternoon shading ‘AV afternoon’. Results were compared with control trees ‘C’. Shading did not modify fruit maturity and therefore harvest date. AV max reduced dry matter content (24%), soluble carbohydrate concentrations (23%) but maintained malic acid concentrations for 2 years out of 3. Sugar:acid ratio was significantly reduced under AV max. The kinetic model simulated the concentrations of soluble sugars, starch, and other compounds (organic acids, cell walls, proteins) and their interactions with reaction rates driven by multiple parameters. The calibration of these parameters with the experimental data made it possible to simulate carbohydrate dynamics of the different experimental years and treatments with a common set of parameters. This common set of parameters indicated that shading did not mostly alter apple metabolism. The model indicated that shading reduced incoming carbon flows and increased water entering the fruit, being the main reason of internal quality modifications. Shading with AV systems seems a useful tool to modify fruit quality for future higher temperatures. Dynamic AV offers the opportunity to tilt the solar panels for optimising carbon acquisition in critical periods for quality determination.</p>","PeriodicalId":7610,"journal":{"name":"Agroforestry Systems","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agroforestry Systems","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10457-024-00965-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Shading with dynamic agrivoltaic (AV) could be a solution to mitigate the effects of climate change but their impact on the fruit quality has not been reported. Apple metabolism and quality were evaluated in a dynamic AV system in a mature ‘Golden Delicious’ orchard in the south of France (2019–2021). Trees were exposed to three different light treatments: maximal shading all day ‘AV max’, morning shading ‘AV morning’, and afternoon shading ‘AV afternoon’. Results were compared with control trees ‘C’. Shading did not modify fruit maturity and therefore harvest date. AV max reduced dry matter content (24%), soluble carbohydrate concentrations (23%) but maintained malic acid concentrations for 2 years out of 3. Sugar:acid ratio was significantly reduced under AV max. The kinetic model simulated the concentrations of soluble sugars, starch, and other compounds (organic acids, cell walls, proteins) and their interactions with reaction rates driven by multiple parameters. The calibration of these parameters with the experimental data made it possible to simulate carbohydrate dynamics of the different experimental years and treatments with a common set of parameters. This common set of parameters indicated that shading did not mostly alter apple metabolism. The model indicated that shading reduced incoming carbon flows and increased water entering the fruit, being the main reason of internal quality modifications. Shading with AV systems seems a useful tool to modify fruit quality for future higher temperatures. Dynamic AV offers the opportunity to tilt the solar panels for optimising carbon acquisition in critical periods for quality determination.
期刊介绍:
Agroforestry Systems is an international scientific journal that publishes results of novel, high impact original research, critical reviews and short communications on any aspect of agroforestry. The journal particularly encourages contributions that demonstrate the role of agroforestry in providing commodity as well non-commodity benefits such as ecosystem services. Papers dealing with both biophysical and socioeconomic aspects are welcome. These include results of investigations of a fundamental or applied nature dealing with integrated systems involving trees and crops and/or livestock. Manuscripts that are purely descriptive in nature or confirmatory in nature of well-established findings, and with limited international scope are discouraged. To be acceptable for publication, the information presented must be relevant to a context wider than the specific location where the study was undertaken, and provide new insight or make a significant contribution to the agroforestry knowledge base