Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bin Gao, Renfeng Peng, Ya-xiang Yuan
{"title":"Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition","authors":"Bin Gao, Renfeng Peng, Ya-xiang Yuan","doi":"10.1007/s10589-024-00559-7","DOIUrl":null,"url":null,"abstract":"<p>We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets—movie ratings, hyperspectral images, and high-dimensional functions—suggest that the proposed algorithms have better or favorably comparable performance to other candidates.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00559-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets—movie ratings, hyperspectral images, and high-dimensional functions—suggest that the proposed algorithms have better or favorably comparable performance to other candidates.

Abstract Image

通过张量环分解实现张量补全的黎曼预处理算法
我们通过张量环分解为张量补全问题提出了黎曼预条件算法。我们在张量环分解中核心张量的模-2 展开矩阵的乘积空间上开发了一种新的黎曼度量。构建该度量的目的是通过其对角线块来近似成本函数的 Hessian,从而为各种黎曼优化方法铺平道路。具体来说,我们提出了黎曼梯度下降算法和黎曼共轭梯度算法。我们证明了这两种算法都能全局收敛到静止点。在实现过程中,我们利用了张量结构,并采用了一种经济的程序,避免了大矩阵表述和梯度计算,从而大大降低了计算成本。在各种合成和真实世界数据集--电影评分、高光谱图像和高维函数--上进行的数值实验表明,所提出的算法与其他候选算法相比具有更好或相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信