{"title":"Pathwidth Versus Cocircumference","authors":"Marcin Briański, Gwenaël Joret, Michał T. Seweryn","doi":"10.1137/23m158663x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 857-866, March 2024. <br/> Abstract. The circumference of a graph [math] with at least one cycle is the length of a longest cycle in [math]. A classic result of Birmelé [J. Graph Theory, 43 (2003), pp. 24–25] states that the treewidth of [math] is at most its circumference minus 1. In case [math] is 2-connected, this upper bound also holds for the pathwidth of [math]; in fact, even the treedepth of [math] is upper bounded by its circumference (Briański et al. [Treedepth vs circumference, Combinatorica, 43 (2023), pp. 659–664]). In this paper, we study whether similar bounds hold when replacing the circumference of [math] by its cocircumference, defined as the largest size of a bond in [math], an inclusionwise minimal set of edges [math] such that [math] has more components than [math]. In matroidal terms, the cocircumference of [math] is the circumference of the bond matroid of [math]. Our first result is the following “dual” version of Birmelé’s theorem: The treewidth of a graph [math] is at most its cocircumference. Our second and main result is an upper bound of [math] on the pathwidth of a 2-connected graph [math] with cocircumference [math]. Contrary to circumference, no such bound holds for the treedepth of [math]. Our two upper bounds are best possible up to a constant factor.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"27 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m158663x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 857-866, March 2024. Abstract. The circumference of a graph [math] with at least one cycle is the length of a longest cycle in [math]. A classic result of Birmelé [J. Graph Theory, 43 (2003), pp. 24–25] states that the treewidth of [math] is at most its circumference minus 1. In case [math] is 2-connected, this upper bound also holds for the pathwidth of [math]; in fact, even the treedepth of [math] is upper bounded by its circumference (Briański et al. [Treedepth vs circumference, Combinatorica, 43 (2023), pp. 659–664]). In this paper, we study whether similar bounds hold when replacing the circumference of [math] by its cocircumference, defined as the largest size of a bond in [math], an inclusionwise minimal set of edges [math] such that [math] has more components than [math]. In matroidal terms, the cocircumference of [math] is the circumference of the bond matroid of [math]. Our first result is the following “dual” version of Birmelé’s theorem: The treewidth of a graph [math] is at most its cocircumference. Our second and main result is an upper bound of [math] on the pathwidth of a 2-connected graph [math] with cocircumference [math]. Contrary to circumference, no such bound holds for the treedepth of [math]. Our two upper bounds are best possible up to a constant factor.
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.