Cauchy Problem for the Loaded Korteweg–de Vries Equation in the Class of Periodic Functions

Pub Date : 2024-02-26 DOI:10.1134/s001226612312008x
A. B. Khasanov, T. G. Khasanov
{"title":"Cauchy Problem for the Loaded Korteweg–de Vries Equation in the Class of Periodic Functions","authors":"A. B. Khasanov, T. G. Khasanov","doi":"10.1134/s001226612312008x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The inverse spectral problem method is applied to finding a solution of the Cauchy\nproblem for the loaded Korteweg–de Vries equation in the class of periodic infinite-gap functions.\nA simple algorithm for constructing a high-order Korteweg–de Vries equation with loaded terms\nand a derivation of an analog of Dubrovin’s system of differential equations are proposed. It is\nshown that the sum of a uniformly convergent function series constructed by solving the Dubrovin\nsystem of equations and the first trace formula actually satisfies the loaded nonlinear\nKorteweg–de Vries equation. In addition, we prove that if the initial function is a real\n<span>\\(\\pi \\)</span>-periodic analytic function, then the solution of the\nCauchy problem is a real analytic function in the variable <span>\\(x \\)</span> as well, and also that if the number\n<span>\\( {\\pi }/{n} \\)</span>, <span>\\(n\\in \\mathbb {N}\\)</span>,\n<span>\\(n\\ge 2 \\)</span>, is the period of the initial function, then the\nnumber <span>\\({\\pi }/{n} \\)</span> is the period for solving the Cauchy problem with\nrespect to the variable <span>\\(x\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s001226612312008x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inverse spectral problem method is applied to finding a solution of the Cauchy problem for the loaded Korteweg–de Vries equation in the class of periodic infinite-gap functions. A simple algorithm for constructing a high-order Korteweg–de Vries equation with loaded terms and a derivation of an analog of Dubrovin’s system of differential equations are proposed. It is shown that the sum of a uniformly convergent function series constructed by solving the Dubrovin system of equations and the first trace formula actually satisfies the loaded nonlinear Korteweg–de Vries equation. In addition, we prove that if the initial function is a real \(\pi \)-periodic analytic function, then the solution of the Cauchy problem is a real analytic function in the variable \(x \) as well, and also that if the number \( {\pi }/{n} \), \(n\in \mathbb {N}\), \(n\ge 2 \), is the period of the initial function, then the number \({\pi }/{n} \) is the period for solving the Cauchy problem with respect to the variable \(x\).

分享
查看原文
周期函数类中负载科特韦格-德-弗里斯方程的考奇问题
摘要 应用逆谱问题方法寻找周期性无穷间隙函数类中加载 Korteweg-de Vries 方程的 Cauchyproblem 解,提出了构造带加载项的高阶 Korteweg-de Vries 方程的简单算法和 Dubrovin 微分方程系的推导。结果表明,通过求解杜布罗文方程组和第一迹公式构建的均匀收敛函数序列之和实际上满足加载非线性科特韦格-德弗里斯方程。此外,我们还证明了如果初始函数是实(\pi \)周期解析函数,那么考奇问题的解也是变量\(x \)中的实解析函数、而且,如果数\({\pi }/{n}\), \(n\in \mathbb {N}\), \(n\ge 2 \),是初始函数的周期,那么数\({\pi }/{n}\) 就是相对于变量\(x\)求解考奇问题的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信