An $O(n \log n)$-Time Approximation Scheme for Geometric Many-to-Many Matching

Sayan Bandyapadhyay, Jie Xue
{"title":"An $O(n \\log n)$-Time Approximation Scheme for Geometric Many-to-Many Matching","authors":"Sayan Bandyapadhyay, Jie Xue","doi":"arxiv-2402.15837","DOIUrl":null,"url":null,"abstract":"Geometric matching is an important topic in computational geometry and has\nbeen extensively studied over decades. In this paper, we study a\ngeometric-matching problem, known as geometric many-to-many matching. In this\nproblem, the input is a set $S$ of $n$ colored points in $\\mathbb{R}^d$, which\nimplicitly defines a graph $G = (S,E(S))$ where $E(S) = \\{(p,q): p,q \\in S\n\\text{ have different colors}\\}$, and the goal is to compute a minimum-cost\nsubset $E^* \\subseteq E(S)$ of edges that cover all points in $S$. Here the\ncost of $E^*$ is the sum of the costs of all edges in $E^*$, where the cost of\na single edge $e$ is the Euclidean distance (or more generally, the\n$L_p$-distance) between the two endpoints of $e$. Our main result is a\n$(1+\\varepsilon)$-approximation algorithm with an optimal running time\n$O_\\varepsilon(n \\log n)$ for geometric many-to-many matching in any fixed\ndimension, which works under any $L_p$-norm. This is the first near-linear\napproximation scheme for the problem in any $d \\geq 2$. Prior to this work,\nonly the bipartite case of geometric many-to-many matching was considered in\n$\\mathbb{R}^1$ and $\\mathbb{R}^2$, and the best known approximation scheme in\n$\\mathbb{R}^2$ takes $O_\\varepsilon(n^{1.5} \\cdot \\mathsf{poly}(\\log n))$ time.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.15837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geometric matching is an important topic in computational geometry and has been extensively studied over decades. In this paper, we study a geometric-matching problem, known as geometric many-to-many matching. In this problem, the input is a set $S$ of $n$ colored points in $\mathbb{R}^d$, which implicitly defines a graph $G = (S,E(S))$ where $E(S) = \{(p,q): p,q \in S \text{ have different colors}\}$, and the goal is to compute a minimum-cost subset $E^* \subseteq E(S)$ of edges that cover all points in $S$. Here the cost of $E^*$ is the sum of the costs of all edges in $E^*$, where the cost of a single edge $e$ is the Euclidean distance (or more generally, the $L_p$-distance) between the two endpoints of $e$. Our main result is a $(1+\varepsilon)$-approximation algorithm with an optimal running time $O_\varepsilon(n \log n)$ for geometric many-to-many matching in any fixed dimension, which works under any $L_p$-norm. This is the first near-linear approximation scheme for the problem in any $d \geq 2$. Prior to this work, only the bipartite case of geometric many-to-many matching was considered in $\mathbb{R}^1$ and $\mathbb{R}^2$, and the best known approximation scheme in $\mathbb{R}^2$ takes $O_\varepsilon(n^{1.5} \cdot \mathsf{poly}(\log n))$ time.
几何多对多匹配的 $O(n \log n)$ 时间逼近方案
几何匹配是计算几何中的一个重要课题,几十年来已被广泛研究。本文研究的是年龄几何匹配问题,即几何多对多匹配。在这个问题中,输入是$\mathbb{R}^d$中由$n$个彩色点组成的集合$S$,它隐式地定义了一个图$G = (S,E(S))$,其中$E(S) = \{(p,q):p,q在S\text{中有不同的颜色}\}$,目标是计算一个覆盖$S$中所有点的边的最小成本子集$E^* \subseteq E(S)$。这里 $E^*$ 的成本是 $E^*$ 中所有边的成本之和,其中单条边 $e$ 的成本是 $e$ 两个端点之间的欧几里得距离(或更通俗地说,$L_p$-distance)。我们的主要成果是一种$(1+\varepsilon)$近似算法,其最优运行时间为$O_\varepsilon(n \log n)$,适用于任何固定维度的几何多对多匹配,在任何$L_p$-norm条件下均可运行。这是第一个在任意 $d \geq 2$ 条件下的近线性近似方案。在这项工作之前,在 $\mathbb{R}^1$ 和 $\mathbb{R}^2$ 中只考虑了几何多对多匹配的两端情况,而在 $\mathbb{R}^2$ 中已知的最佳近似方案需要 $O_\varepsilon(n^{1.5}.\cdot \mathsf{poly}(\log n))$ 时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信