On the stochastic bifurcations regarding random iterations of polynomials of the form

Pub Date : 2024-02-26 DOI:10.1017/etds.2024.17
TAKAYUKI WATANABE
{"title":"On the stochastic bifurcations regarding random iterations of polynomials of the form","authors":"TAKAYUKI WATANABE","doi":"10.1017/etds.2024.17","DOIUrl":null,"url":null,"abstract":"In this paper, we consider random iterations of polynomial maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline2.png\" /> <jats:tex-math> $z^{2} + c_{n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline3.png\" /> <jats:tex-math> $c_{n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are complex-valued independent random variables following the uniform distribution on the closed disk with center <jats:italic>c</jats:italic> and radius <jats:italic>r</jats:italic>. The aim of this paper is twofold. First, we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships between the bifurcation radius and connectedness of random Julia sets. Second, we investigate the bifurcation of our random iterations and give quantitative estimates of bifurcation parameters. In particular, we prove that for the central parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline4.png\" /> <jats:tex-math> $c = -1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, almost every random Julia set is totally disconnected with much smaller radial parameters <jats:italic>r</jats:italic> than expected. We also introduce several open questions worth discussing.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider random iterations of polynomial maps $z^{2} + c_{n}$ , where $c_{n}$ are complex-valued independent random variables following the uniform distribution on the closed disk with center c and radius r. The aim of this paper is twofold. First, we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships between the bifurcation radius and connectedness of random Julia sets. Second, we investigate the bifurcation of our random iterations and give quantitative estimates of bifurcation parameters. In particular, we prove that for the central parameter $c = -1$ , almost every random Julia set is totally disconnected with much smaller radial parameters r than expected. We also introduce several open questions worth discussing.
分享
查看原文
关于形式为多项式的随机迭代的随机分岔
在本文中,我们考虑多项式映射 $z^{2} + c_{n}$ 的随机迭代。+ c_{n}$ ,其中 $c_{n}$ 是复值独立随机变量,在以 c 为圆心、r 为半径的封闭圆盘上服从均匀分布。首先,我们研究随机 Julia 集的(不)连通性。在这里,我们揭示了随机 Julia 集的分岔半径和连通性之间的关系。其次,我们研究了随机迭代的分岔,并给出了分岔参数的定量估计。特别是,我们证明了对于中心参数 $c = -1$ ,几乎每个随机 Julia 集都是完全断开的,其径向参数 r 比预期的要小得多。我们还介绍了几个值得讨论的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信