Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao
{"title":"Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes","authors":"Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao","doi":"10.1615/jenhheattransf.2024051809","DOIUrl":null,"url":null,"abstract":"The flow and heat transfer experiments are conducted in this paper for eleven internally grooved tubes. Refrigerants are boiling or condensing outside the tube. The experimental tubes have the internal helical rib heights of 0.25-0.36 mm, helix angles of 40-60°, rib base thicknesses of 0.40-0.79 mm, rib tip thicknesses of 0.078-0.283 mm, and Ns (Number of circumferential micro-fins per circle) of 40-50.It shows that the heat transfer enhanced ratios is usually ranging from 2.3-3.64. The friction factor relative to the smooth tube are about 1.8 to 3.3 times higher. Analyzing the effect of rib geometry on flow and heat transfer, it was found that the higher the height of the internal rib, the better the enhancement of convective heat transfer in the tube. The greater the thickness of the rib tip and base, the more detrimental to the friction factor in the tube. It had not noticeable influence on the heat transfer performance as the helix angle increases from 45° to 50°. For the increase of Ns, it appears that 45 ribs per circle is the best value in the present study when considering the increase in pressure loss. The thermal-hydraulic performance of eleven tubes were also evaluated. It shows that Tube-1 had the best performance in the condensing tubes and Tube-7 had the best performance in the boiling tubes.","PeriodicalId":50208,"journal":{"name":"Journal of Enhanced Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enhanced Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2024051809","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The flow and heat transfer experiments are conducted in this paper for eleven internally grooved tubes. Refrigerants are boiling or condensing outside the tube. The experimental tubes have the internal helical rib heights of 0.25-0.36 mm, helix angles of 40-60°, rib base thicknesses of 0.40-0.79 mm, rib tip thicknesses of 0.078-0.283 mm, and Ns (Number of circumferential micro-fins per circle) of 40-50.It shows that the heat transfer enhanced ratios is usually ranging from 2.3-3.64. The friction factor relative to the smooth tube are about 1.8 to 3.3 times higher. Analyzing the effect of rib geometry on flow and heat transfer, it was found that the higher the height of the internal rib, the better the enhancement of convective heat transfer in the tube. The greater the thickness of the rib tip and base, the more detrimental to the friction factor in the tube. It had not noticeable influence on the heat transfer performance as the helix angle increases from 45° to 50°. For the increase of Ns, it appears that 45 ribs per circle is the best value in the present study when considering the increase in pressure loss. The thermal-hydraulic performance of eleven tubes were also evaluated. It shows that Tube-1 had the best performance in the condensing tubes and Tube-7 had the best performance in the boiling tubes.
期刊介绍:
The Journal of Enhanced Heat Transfer will consider a wide range of scholarly papers related to the subject of "enhanced heat and mass transfer" in natural and forced convection of liquids and gases, boiling, condensation, radiative heat transfer.
Areas of interest include:
■Specially configured surface geometries, electric or magnetic fields, and fluid additives - all aimed at enhancing heat transfer rates. Papers may include theoretical modeling, experimental techniques, experimental data, and/or application of enhanced heat transfer technology.
■The general topic of "high performance" heat transfer concepts or systems is also encouraged.