Nonlinear Stochastic Operators and Associated Inhomogeneous Entangled Quantum Markov Chains

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Abdessatar Souissi, Farrukh Mukhamedov
{"title":"Nonlinear Stochastic Operators and Associated Inhomogeneous Entangled Quantum Markov Chains","authors":"Abdessatar Souissi, Farrukh Mukhamedov","doi":"10.1007/s44198-024-00172-6","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we introduce a class of <i>F</i>-stochastic operators on a finite-dimensional simplex, each of which is regular, ascertaining that the species distribution in the succeeding generation corresponds to the species distribution in the previous one in the long run. It is proposed a new scheme to define non-homogeneous Markov chains contingent on the <i>F</i>-stochastic operators and given initial data. By means of the uniform ergodicity of the non-homogeneous Markov chain, we define a non-homogeneous (quantum) entangled Markov chain. Furthermore, it is established that the non-homogeneous entangled Markov chain enables <span>\\(\\psi\\)</span>-mixing property.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00172-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we introduce a class of F-stochastic operators on a finite-dimensional simplex, each of which is regular, ascertaining that the species distribution in the succeeding generation corresponds to the species distribution in the previous one in the long run. It is proposed a new scheme to define non-homogeneous Markov chains contingent on the F-stochastic operators and given initial data. By means of the uniform ergodicity of the non-homogeneous Markov chain, we define a non-homogeneous (quantum) entangled Markov chain. Furthermore, it is established that the non-homogeneous entangled Markov chain enables \(\psi\)-mixing property.

非线性随机算子及相关非均质纠缠量子马尔可夫链
在本文中,我们引入了一类有限维单纯形上的 F-随机算子,每个算子都是有规律的,可以确定下一代的物种分布与上一代的物种分布长期对应。本文提出了一种新方案,以定义取决于 F 随机算子和给定初始数据的非均质马尔可夫链。通过非均相马尔科夫链的均匀遍历性,我们定义了非均相(量子)纠缠马尔科夫链。此外,我们还确定了非均质纠缠马尔科夫链能够实现 \(\psi\)-mixing 特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信