The [1, 0]-twisted generalized Reed-Solomon code

Canze Zhu, Qunying Liao
{"title":"The [1, 0]-twisted generalized Reed-Solomon code","authors":"Canze Zhu, Qunying Liao","doi":"10.1007/s12095-024-00704-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we not only give the parity check matrix of the [1, 0]-twisted generalized Reed-Solomon (in short, TGRS) code, but also determine the weight distribution. Especially, we show that the [1, 0]-TGRS code is not GRS or EGRS. Furthermore, we present a sufficient and necessary condition for any punctured code of the [1, 0]-TGRS code to be self-orthogonal, and then construct several classes of self-dual or almost self-dual [1, 0]-TGRS codes. Finally, on the basis of these self-dual or almost self-dual [1, 0]-TGRS codes, we obtain some LCD [1, 0]-TGRS codes.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00704-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we not only give the parity check matrix of the [1, 0]-twisted generalized Reed-Solomon (in short, TGRS) code, but also determine the weight distribution. Especially, we show that the [1, 0]-TGRS code is not GRS or EGRS. Furthermore, we present a sufficient and necessary condition for any punctured code of the [1, 0]-TGRS code to be self-orthogonal, and then construct several classes of self-dual or almost self-dual [1, 0]-TGRS codes. Finally, on the basis of these self-dual or almost self-dual [1, 0]-TGRS codes, we obtain some LCD [1, 0]-TGRS codes.

[1,0]扭曲的广义里德-所罗门码
本文不仅给出了[1, 0]-扭曲广义里德-所罗门码(简称 TGRS)的奇偶校验矩阵,还确定了权重分布。特别是,我们证明了 [1, 0]-TGRS 码不是 GRS 或 EGRS。此外,我们还提出了[1, 0]-TGRS 码的任何穿点码都是自正交的充分必要条件,然后构造了几类自双或几乎自双的[1, 0]-TGRS 码。最后,在这些自双或近似自双 [1, 0]-TGRS 码的基础上,我们得到了一些 LCD [1, 0]-TGRS 码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信