Inference of partial correlations of a multivariate Gaussian time series

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-02-26 DOI:10.1093/biomet/asae012
A S DiLernia, M Fiecas, L Zhang
{"title":"Inference of partial correlations of a multivariate Gaussian time series","authors":"A S DiLernia, M Fiecas, L Zhang","doi":"10.1093/biomet/asae012","DOIUrl":null,"url":null,"abstract":"We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.
多变量高斯时间序列的局部相关性推理
在轻度正则性条件下,我们推导出了多元高斯时间序列偏相关性的渐近联合分布和新型协方差估计器。利用我们推导出的渐近分布,我们开发了一种 Wald 置信区间和测试程序,用于推断时间序列数据的单个偏相关性。通过仿真,我们证明了我们提出的置信区间能获得更高的覆盖率,而我们的测试程序能获得更接近名义水平的假阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信