{"title":"Text-based sentiment analysis in finance: Synthesising the existing literature and exploring future directions","authors":"Andrew Todd, James Bowden, Yashar Moshfeghi","doi":"10.1002/isaf.1549","DOIUrl":null,"url":null,"abstract":"<p>Advances in Deep Learning have drastically improved the abilities of Natural Language Processing (NLP) research, creating new state-of-the-art benchmarks. Two research streams at the forefront of NLP analysis are transformer architecture and multimodal analysis. This paper critically evaluates the extant literature applying sentiment analysis techniques to the financial domain. We classify the financial sentiment analysis literature according to the most used techniques in the area, with a focus on methods used to detect sentiment within corporate earnings conference calls, because of their dual modality (text-audio) nature. We find that the financial literature follows a similar path to NLP sentiment literature, in that more advanced techniques to define sentiment are being used as the field progresses. However, techniques used to determine financial sentiment currently fall behind state-of-the-art techniques used within NLP. Two future directions stem from this paper. Firstly, we propose that the adoption of transformer architecture to create robust representations of textual data could enhance sentiment analysis in academic finance. Secondly, the adoption of multimodal classifiers in finance represents a new, currently underexplored area of study that offers opportunities for finance research.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in Deep Learning have drastically improved the abilities of Natural Language Processing (NLP) research, creating new state-of-the-art benchmarks. Two research streams at the forefront of NLP analysis are transformer architecture and multimodal analysis. This paper critically evaluates the extant literature applying sentiment analysis techniques to the financial domain. We classify the financial sentiment analysis literature according to the most used techniques in the area, with a focus on methods used to detect sentiment within corporate earnings conference calls, because of their dual modality (text-audio) nature. We find that the financial literature follows a similar path to NLP sentiment literature, in that more advanced techniques to define sentiment are being used as the field progresses. However, techniques used to determine financial sentiment currently fall behind state-of-the-art techniques used within NLP. Two future directions stem from this paper. Firstly, we propose that the adoption of transformer architecture to create robust representations of textual data could enhance sentiment analysis in academic finance. Secondly, the adoption of multimodal classifiers in finance represents a new, currently underexplored area of study that offers opportunities for finance research.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.