Robust reduced-order machine learning modeling of high-dimensional nonlinear processes using noisy data

IF 3 Q2 ENGINEERING, CHEMICAL
Wallace Gian Yion Tan, Ming Xiao, Zhe Wu
{"title":"Robust reduced-order machine learning modeling of high-dimensional nonlinear processes using noisy data","authors":"Wallace Gian Yion Tan,&nbsp;Ming Xiao,&nbsp;Zhe Wu","doi":"10.1016/j.dche.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>Autoencoder-based reduced-order machine learning models have been developed for modeling and predictive control of nonlinear chemical processes with high dimensionality such as discretization of reaction–diffusion processes. However, in the presence of data noise, autoencoders may over-fit the training data and subsequently learn an inaccurate low-dimensional representation of the process variables. This leads to an inaccurate prediction model when the models are integrated with model predictive control (MPC). To address this issue, this work develops a novel machine-learning-based reduced-order modeling method by integrating SpectralDense layers into autoencoders and incorporating them with recurrent neural networks. We demonstrate that the new architecture of autoencoders using SpectralDense layers is more robust against over-fitting than conventional autoencoders in the presence of data noise, which improves the prediction accuracy in MPC. A diffusion–reaction process simulation example is used to demonstrate that the robust autoencoders outperform those using conventional layers for reduced-order modeling in predictive control.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000073/pdfft?md5=cdabfdcb0e5c07a2bd798e279578f2c3&pid=1-s2.0-S2772508124000073-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Autoencoder-based reduced-order machine learning models have been developed for modeling and predictive control of nonlinear chemical processes with high dimensionality such as discretization of reaction–diffusion processes. However, in the presence of data noise, autoencoders may over-fit the training data and subsequently learn an inaccurate low-dimensional representation of the process variables. This leads to an inaccurate prediction model when the models are integrated with model predictive control (MPC). To address this issue, this work develops a novel machine-learning-based reduced-order modeling method by integrating SpectralDense layers into autoencoders and incorporating them with recurrent neural networks. We demonstrate that the new architecture of autoencoders using SpectralDense layers is more robust against over-fitting than conventional autoencoders in the presence of data noise, which improves the prediction accuracy in MPC. A diffusion–reaction process simulation example is used to demonstrate that the robust autoencoders outperform those using conventional layers for reduced-order modeling in predictive control.

利用噪声数据对高维非线性过程进行稳健的降阶机器学习建模
基于自编码器的降阶机器学习模型已被开发用于高维度非线性化学过程的建模和预测控制,如反应扩散过程的离散化。然而,在存在数据噪声的情况下,自动编码器可能会过度拟合训练数据,从而学习到不准确的过程变量低维表示。当模型与模型预测控制(MPC)集成时,这会导致预测模型不准确。为解决这一问题,本研究通过将 SpectralDense 层集成到自动编码器中,并将其与递归神经网络相结合,开发了一种基于机器学习的新型降阶建模方法。我们证明,在存在数据噪声的情况下,使用 SpectralDense 层的自编码器新架构比传统自编码器更能防止过拟合,从而提高了 MPC 的预测精度。一个扩散反应过程仿真实例证明,在预测控制的降阶建模中,鲁棒性自编码器优于使用传统层的自编码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信