Improving Molecule Generation and Drug Discovery with a Knowledge-enhanced Generative Model.

ArXiv Pub Date : 2024-10-07
Aditya Malusare, Vaneet Aggarwal
{"title":"Improving Molecule Generation and Drug Discovery with a Knowledge-enhanced Generative Model.","authors":"Aditya Malusare, Vaneet Aggarwal","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in generative models have established state-of-the-art benchmarks in the generation of molecules and novel drug candidates. Despite these successes, a significant gap persists between generative models and the utilization of extensive biomedical knowledge, often systematized within knowledge graphs, whose potential to inform and enhance generative processes has not been realized. In this paper, we present a novel approach that bridges this divide by developing a framework for knowledge-enhanced generative models called KARL. We develop a scalable methodology to extend the functionality of knowledge graphs while preserving semantic integrity, and incorporate this contextual information into a generative framework to guide a diffusion-based model. The integration of knowledge graph embeddings with our generative model furnishes a robust mechanism for producing novel drug candidates possessing specific characteristics while ensuring validity and synthesizability. KARL outperforms state-of-the-art generative models on both unconditional and targeted generation tasks.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in generative models have established state-of-the-art benchmarks in the generation of molecules and novel drug candidates. Despite these successes, a significant gap persists between generative models and the utilization of extensive biomedical knowledge, often systematized within knowledge graphs, whose potential to inform and enhance generative processes has not been realized. In this paper, we present a novel approach that bridges this divide by developing a framework for knowledge-enhanced generative models called KARL. We develop a scalable methodology to extend the functionality of knowledge graphs while preserving semantic integrity, and incorporate this contextual information into a generative framework to guide a diffusion-based model. The integration of knowledge graph embeddings with our generative model furnishes a robust mechanism for producing novel drug candidates possessing specific characteristics while ensuring validity and synthesizability. KARL outperforms state-of-the-art generative models on both unconditional and targeted generation tasks.

利用知识增强型生成模型改进分子生成和药物发现。
生成模型的最新进展为生成分子和新型候选药物确立了最先进的基准。尽管取得了这些成就,但在生成模型与利用广泛的生物医学知识(通常在知识图谱中系统化)之间仍然存在着巨大的差距,而这些知识为生成过程提供信息和增强生成过程的潜力尚未实现。在本文中,我们提出了一种新颖的方法,通过开发一种名为 K-DReAM 的知识增强生成模型框架来弥合这一鸿沟。我们开发了一种可扩展的方法来扩展知识图谱的功能,同时保持语义的完整性,并将这种上下文信息纳入生成框架,以指导基于扩散的模型。知识图谱嵌入与我们的生成模型相结合,提供了一种稳健的机制,用于生成具有特定特征的新型候选药物,同时确保有效性和可合成性。K-DReAM 在无条件生成任务和目标生成任务中的表现都优于最先进的生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信