{"title":"Mild limb girdle muscular dystrophy R9 phenotype caused by novel compound heterozygous FKRP gene mutation.","authors":"Ikhlass Belhassen, Rita Menassa, Salma Sakka, Laurence Michel-Calemard, Nathalie Streichenberger, Dorra Ben Ayed, Nadia Bouattour, Mariem Dammak, Chokri Mhiri","doi":"10.36185/2532-1900-391","DOIUrl":null,"url":null,"abstract":"<p><p>Fukutin-related protein (FKRP) mutations cause a broad spectrum of muscular dystrophies, from a relatively mild limb-girdle muscular dystrophy type 9 (LGMDR9) to severe congenital muscular dystrophy (CMD). This study aims to report two siblings belonging to a non-consanguineous Tunisian family harboring a novel compound heterozygous <i>FKRP</i> variant and presenting a mild LGDMR9 phenotype. For mutation screening, massive parallel sequencing was performed, followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to validate the existence of the discovered variants. The absence of alpha-dystroglycan was determined by immunohistochemistry. Brain and thigh magnetic resonance imaging (MRI) were performed to detect thigh and brain abnormalities. The two siblings had a late age at onset and clinical examination showed that the pelvic girdles had a predominantly proximal and symmetrical distribution of weakness without cardiac or respiratory involvement. They both had a modified Gardner-Medwin Walton Scale mGMWS grade of 4 and a modified Rankin Scale (mRS) score of 1. The DNA sequencing revealed a novel deletion of exons 2 and 3 in one allele and a missense mutation c.1364C > A, which has been reported to be responsible for congenital muscular dystrophy and mental retardation on the second allele. The simultaneous presence of the two variations in the two cases suggests that the variants segregate with the pathophysiology.</p>","PeriodicalId":93851,"journal":{"name":"Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology","volume":"42 4","pages":"106-112"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36185/2532-1900-391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fukutin-related protein (FKRP) mutations cause a broad spectrum of muscular dystrophies, from a relatively mild limb-girdle muscular dystrophy type 9 (LGMDR9) to severe congenital muscular dystrophy (CMD). This study aims to report two siblings belonging to a non-consanguineous Tunisian family harboring a novel compound heterozygous FKRP variant and presenting a mild LGDMR9 phenotype. For mutation screening, massive parallel sequencing was performed, followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to validate the existence of the discovered variants. The absence of alpha-dystroglycan was determined by immunohistochemistry. Brain and thigh magnetic resonance imaging (MRI) were performed to detect thigh and brain abnormalities. The two siblings had a late age at onset and clinical examination showed that the pelvic girdles had a predominantly proximal and symmetrical distribution of weakness without cardiac or respiratory involvement. They both had a modified Gardner-Medwin Walton Scale mGMWS grade of 4 and a modified Rankin Scale (mRS) score of 1. The DNA sequencing revealed a novel deletion of exons 2 and 3 in one allele and a missense mutation c.1364C > A, which has been reported to be responsible for congenital muscular dystrophy and mental retardation on the second allele. The simultaneous presence of the two variations in the two cases suggests that the variants segregate with the pathophysiology.