{"title":"Long-read sequencing improves diagnostic rate in neuromuscular disorders.","authors":"Rafaela Owusu, Marco Savarese","doi":"10.36185/2532-1900-394","DOIUrl":null,"url":null,"abstract":"<p><p>Massive parallel sequencing methods, such as exome, genome, and targeted DNA sequencing, have aided molecular diagnosis of genetic diseases in the last 20 years. However, short-read sequencing methods still have several limitations, such inaccurate genome assembly, the inability to detect large structural variants, and variants located in hard-to-sequence regions like highly repetitive areas. The recently emerged PacBio single-molecule real-time (SMRT) and Oxford nanopore technology (ONT) long-read sequencing (LRS) methods have been shown to overcome most of these technical issues, leading to an increase in diagnostic rate. LRS methods are contributing to the detection of repeat expansions in novel disease-causing genes (e.g., <i>ABCD3</i>, <i>NOTCH2NLC</i> and <i>RILPL1</i> causing an Oculopharyngodistal myopathy or <i>PLIN4</i> causing a Myopathy with rimmed ubiquitin-positive autophagic vacuolation), of structural variants (e.g., in <i>DMD</i>), and of single nucleotide variants in repetitive regions (<i>TTN</i> and <i>NEB</i>). Moreover, these methods have simplified the characterization of the D4Z4 repeats in <i>DUX4</i>, facilitating the diagnosis of Facioscapulohumeral muscular dystrophy (FSHD). We review recent studies that have used either ONT or PacBio SMRT sequencing methods and discuss different types of variants that have been detected using these approaches in individuals with neuromuscular disorders.</p>","PeriodicalId":93851,"journal":{"name":"Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology","volume":"42 4","pages":"123-128"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36185/2532-1900-394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Massive parallel sequencing methods, such as exome, genome, and targeted DNA sequencing, have aided molecular diagnosis of genetic diseases in the last 20 years. However, short-read sequencing methods still have several limitations, such inaccurate genome assembly, the inability to detect large structural variants, and variants located in hard-to-sequence regions like highly repetitive areas. The recently emerged PacBio single-molecule real-time (SMRT) and Oxford nanopore technology (ONT) long-read sequencing (LRS) methods have been shown to overcome most of these technical issues, leading to an increase in diagnostic rate. LRS methods are contributing to the detection of repeat expansions in novel disease-causing genes (e.g., ABCD3, NOTCH2NLC and RILPL1 causing an Oculopharyngodistal myopathy or PLIN4 causing a Myopathy with rimmed ubiquitin-positive autophagic vacuolation), of structural variants (e.g., in DMD), and of single nucleotide variants in repetitive regions (TTN and NEB). Moreover, these methods have simplified the characterization of the D4Z4 repeats in DUX4, facilitating the diagnosis of Facioscapulohumeral muscular dystrophy (FSHD). We review recent studies that have used either ONT or PacBio SMRT sequencing methods and discuss different types of variants that have been detected using these approaches in individuals with neuromuscular disorders.