Deciphering cancer cell state plasticity with single-cell genomics and artificial intelligence.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Emily Holton, Walter Muskovic, Joseph E Powell
{"title":"Deciphering cancer cell state plasticity with single-cell genomics and artificial intelligence.","authors":"Emily Holton, Walter Muskovic, Joseph E Powell","doi":"10.1186/s13073-024-01309-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01309-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.

利用单细胞基因组学和人工智能解密癌细胞状态可塑性。
癌症干细胞可塑性是指肿瘤细胞在不同状态之间动态转换的能力--例如,从癌症干细胞状态转换到非癌症干细胞状态。在调控过程的作用下,细胞在连续体中过渡,这种过渡空间通常被称为细胞状态景观。癌细胞状态的可塑性会导致不同的生物学行为,某些细胞状态或状态转换会导致肿瘤进展和治疗反应。单细胞检测技术的出现意味着现在可以对单个癌细胞的这些特征进行大规模测量。然而,这种数据的高维度、基因组特征之间的复杂关系,以及对定义癌细胞状态的基因组特征缺乏精确了解,都为人工智能方法描绘癌细胞状态景观打开了大门。对由数百万个细胞的平均信号构成的 "批量 "基因组数据进行分析,掩盖了细胞状态可塑性对治疗耐药性、转移和休眠等癌症表型的影响。单细胞技术解决了这一问题,它能生成肿瘤生态系统的高维细胞图谱,量化单个细胞的基因组特征,并创建一个更详细的模型来研究癌症的可塑性(Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020)。与此同时,人工智能方法的快速发展催生了大量可用于研究癌细胞可塑性的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信