Modulation of Protein Disulfide Isomerase Functions by Localization: The Example of the Anterior Gradient Family.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antioxidants & redox signaling Pub Date : 2024-10-01 Epub Date: 2024-04-03 DOI:10.1089/ars.2024.0561
Arvin S Pierre, Noa Gavriel, Marianne Guilbard, Eric Ogier-Denis, Eric Chevet, Frederic Delom, Aeid Igbaria
{"title":"Modulation of Protein Disulfide Isomerase Functions by Localization: The Example of the Anterior Gradient Family.","authors":"Arvin S Pierre, Noa Gavriel, Marianne Guilbard, Eric Ogier-Denis, Eric Chevet, Frederic Delom, Aeid Igbaria","doi":"10.1089/ars.2024.0561","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. <b><i>Recent Advances:</i></b> Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. <b><i>Critical Issues:</i></b> Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. <b><i>Future Directions:</i></b> Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"675-692"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0561","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. Recent Advances: Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. Critical Issues: Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. Future Directions: Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.

通过定位调节 PDI 函数:前梯度家族的例子
重要意义内质网(ER)内的氧化折叠将二硫键引入新生多肽,从而确保蛋白质的稳定性和正常功能。因此,这一过程对于维持蛋白质组的完整性和整体健康至关重要。成千上万分泌蛋白的高效折叠需要严格的质量控制措施,如未折叠蛋白反应(UPR)和ER相关降解(ERAD),它们对维持ER平衡做出了重要贡献。ER定位的蛋白二硫异构酶(PDI)在上述每个过程中都起着至关重要的作用,从而促进了ER平衡的各个方面,包括维持氧化还原平衡、适当的蛋白质折叠以及从ER到细胞核的信号传递:近年来,关于 PDI 家族成员和其他 ER 定位蛋白(重新)定位到不同区室的报道越来越多。一个典型的例子是前梯度(AGR)家族的 PDI 蛋白,有报道称它们转移到了细胞质或细胞外环境,获得了与各种细胞信号通路交叉的功能:在此,我们总结了 PDIs 的功能及其在非 ER 位置的功能增益或丧失。我们将重点关注 AGR 蛋白的活性、定位和功能:AGR1、AGR2 和 AGR3:针对一般的 PDIs,尤其是 AGRs,是治疗不同人类疾病的一种有前景的策略。因此,有必要开发以 PDIs 为靶点的创新策略和工具;这些策略应整合这些 PDIs 的特定定位和新获得的功能,而不是仅仅关注它们的典型作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信