Lingxiang Wang, Jiale Wang, Dongfeng Feng, Bin Wang, Yasmin Jahan-Mihan, Ying Wang, Yan Bi, DoYoung Lim, Baoan Ji
{"title":"A simple and effective genotyping workflow for rapid detection of CRISPR genome editing.","authors":"Lingxiang Wang, Jiale Wang, Dongfeng Feng, Bin Wang, Yasmin Jahan-Mihan, Ying Wang, Yan Bi, DoYoung Lim, Baoan Ji","doi":"10.1152/ajpgi.00013.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically engineered mouse models play a pivotal role in the modeling of diseases, exploration of gene functions, and the development of novel therapies. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing technology has revolutionized the process of developing such models by enabling precise genome modifications of the multiple interested genes simultaneously. Following genome editing, an efficient genotyping methodology is crucial for subsequent characterization. However, current genotyping methods are laborious, time-consuming, and costly. Here, using targeting the mouse trypsinogen genes as an example, we introduced common applications of CRISPR-Cas9 editing and a streamlined cost-effective genotyping workflow for CRISPR-edited mouse models, in which Sanger sequencing is required only at the initial steps. In the F0 mice, we focused on identifying the presence of positive editing by PCR followed by Sanger sequencing without the need to know the exact sequences, simplifying the initial screening. In the F1 mice, Sanger sequencing and algorithms decoding were used to identify the precise editing. Once the edited sequence was established, a simple and effective genotyping strategy was established to distinguish homozygous and heterozygous status by PCR from tail DNA. The genotyping workflow applies to deletions as small as one nucleotide, multiple-gene knockout, and knockin studies. This simplified, efficient, and cost-effective genotyping shall be instructive to new investigators who are unfamiliar with characterizing CRISPR-Cas9-edited mouse strains.<b>NEW & NOTEWORTHY</b> This study presents a streamlined, cost-effective genotyping workflow for clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) edited mouse models, focusing on trypsinogen genes. It simplifies initial F0 mouse screening using PCR and Sanger sequencing without needing exact sequences. For F1 mice, precise editing is identified through Sanger sequencing and algorithm decoding. The workflow includes a novel PCR strategy for distinguishing homozygous and heterozygous statuses in subsequent generations, effective for small deletions, multiple-gene knockouts, and knockins.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216750/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00013.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically engineered mouse models play a pivotal role in the modeling of diseases, exploration of gene functions, and the development of novel therapies. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing technology has revolutionized the process of developing such models by enabling precise genome modifications of the multiple interested genes simultaneously. Following genome editing, an efficient genotyping methodology is crucial for subsequent characterization. However, current genotyping methods are laborious, time-consuming, and costly. Here, using targeting the mouse trypsinogen genes as an example, we introduced common applications of CRISPR-Cas9 editing and a streamlined cost-effective genotyping workflow for CRISPR-edited mouse models, in which Sanger sequencing is required only at the initial steps. In the F0 mice, we focused on identifying the presence of positive editing by PCR followed by Sanger sequencing without the need to know the exact sequences, simplifying the initial screening. In the F1 mice, Sanger sequencing and algorithms decoding were used to identify the precise editing. Once the edited sequence was established, a simple and effective genotyping strategy was established to distinguish homozygous and heterozygous status by PCR from tail DNA. The genotyping workflow applies to deletions as small as one nucleotide, multiple-gene knockout, and knockin studies. This simplified, efficient, and cost-effective genotyping shall be instructive to new investigators who are unfamiliar with characterizing CRISPR-Cas9-edited mouse strains.NEW & NOTEWORTHY This study presents a streamlined, cost-effective genotyping workflow for clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) edited mouse models, focusing on trypsinogen genes. It simplifies initial F0 mouse screening using PCR and Sanger sequencing without needing exact sequences. For F1 mice, precise editing is identified through Sanger sequencing and algorithm decoding. The workflow includes a novel PCR strategy for distinguishing homozygous and heterozygous statuses in subsequent generations, effective for small deletions, multiple-gene knockouts, and knockins.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.