Convergence of successive linear programming algorithms for noisy functions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christoph Hansknecht, Christian Kirches, Paul Manns
{"title":"Convergence of successive linear programming algorithms for noisy functions","authors":"Christoph Hansknecht, Christian Kirches, Paul Manns","doi":"10.1007/s10589-024-00564-w","DOIUrl":null,"url":null,"abstract":"<p>Gradient-based methods have been highly successful for solving a variety of both unconstrained and constrained nonlinear optimization problems. In real-world applications, such as optimal control or machine learning, the necessary function and derivative information may be corrupted by noise, however. Sun and Nocedal have recently proposed a remedy for smooth unconstrained problems by means of a stabilization of the acceptance criterion for computed iterates, which leads to convergence of the iterates of a trust-region method to a region of criticality (Sun and Nocedal in Math Program 66:1–28, 2023. https://doi.org/10.1007/s10107-023-01941-9). We extend their analysis to the successive linear programming algorithm (Byrd et al. in Math Program 100(1):27–48, 2003. https://doi.org/10.1007/s10107-003-0485-4, SIAM J Optim 16(2):471–489, 2005. https://doi.org/10.1137/S1052623403426532) for unconstrained optimization problems with objectives that can be characterized as the composition of a polyhedral function with a smooth function, where the latter and its gradient may be corrupted by noise. This gives the flexibility to cover, for example, (sub)problems arising in image reconstruction or constrained optimization algorithms. We provide computational examples that illustrate the findings and point to possible strategies for practical determination of the stabilization parameter that balances the size of the critical region with a relaxation of the acceptance criterion (or descent property) of the algorithm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00564-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gradient-based methods have been highly successful for solving a variety of both unconstrained and constrained nonlinear optimization problems. In real-world applications, such as optimal control or machine learning, the necessary function and derivative information may be corrupted by noise, however. Sun and Nocedal have recently proposed a remedy for smooth unconstrained problems by means of a stabilization of the acceptance criterion for computed iterates, which leads to convergence of the iterates of a trust-region method to a region of criticality (Sun and Nocedal in Math Program 66:1–28, 2023. https://doi.org/10.1007/s10107-023-01941-9). We extend their analysis to the successive linear programming algorithm (Byrd et al. in Math Program 100(1):27–48, 2003. https://doi.org/10.1007/s10107-003-0485-4, SIAM J Optim 16(2):471–489, 2005. https://doi.org/10.1137/S1052623403426532) for unconstrained optimization problems with objectives that can be characterized as the composition of a polyhedral function with a smooth function, where the latter and its gradient may be corrupted by noise. This gives the flexibility to cover, for example, (sub)problems arising in image reconstruction or constrained optimization algorithms. We provide computational examples that illustrate the findings and point to possible strategies for practical determination of the stabilization parameter that balances the size of the critical region with a relaxation of the acceptance criterion (or descent property) of the algorithm.

Abstract Image

噪声函数的连续线性规划算法的收敛性
基于梯度的方法在解决各种无约束和有约束的非线性优化问题方面取得了巨大成功。然而,在实际应用中,如最优控制或机器学习,必要的函数和导数信息可能会被噪声干扰。Sun 和 Nocedal 最近提出了一种针对平滑无约束问题的补救方法,即通过稳定计算迭代的接受准则,使信任区域方法的迭代收敛到临界区域(Sun 和 Nocedal 在 Math Program 66:1-28, 2023. https://doi.org/10.1007/s10107-023-01941-9)。我们将他们的分析扩展到连续线性规划算法(Byrd 等人在《Math Program》100(1):27-48, 2003. https://doi.org/10.1007/s10107-003-0485-4, SIAM J Optim 16(2):471-489, 2005. https://doi.org/10.1137/S1052623403426532),该算法适用于无约束优化问题,其目标可表征为多面体函数与平滑函数的组合,其中后者及其梯度可能被噪声破坏。这使得我们可以灵活地处理图像重建或约束优化算法中出现的(子)问题。我们提供了一些计算实例来说明这些发现,并指出了实际确定稳定参数的可能策略,该策略可在临界区域的大小与算法的接受准则(或下降特性)的放宽之间取得平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信