The largest prime factor of $n^{2}+1$ and improvements on subexponential $ABC$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hector Pasten
{"title":"The largest prime factor of $n^{2}+1$ and improvements on subexponential $ABC$","authors":"Hector Pasten","doi":"10.1007/s00222-024-01244-6","DOIUrl":null,"url":null,"abstract":"<p>We combine transcendental methods and the modular approaches to the <span>\\(ABC\\)</span> conjecture to show that the largest prime factor of <span>\\(n^{2}+1\\)</span> is at least of size <span>\\((\\log _{2} n)^{2}/\\log _{3}n\\)</span> where <span>\\(\\log _{k}\\)</span> is the <span>\\(k\\)</span>-th iterate of the logarithm. This gives a substantial improvement on the best available estimates, which are essentially of size <span>\\(\\log _{2} n\\)</span> going back to work of Chowla in 1934. Using the same ideas, we also obtain significant progress on subexpoential bounds for the <span>\\(ABC\\)</span> conjecture, which in a case gives the first improvement on a result by Stewart and Yu dating back over two decades. Central to our approach is the connection between Shimura curves and the <span>\\(ABC\\)</span> conjecture developed by the author.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01244-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We combine transcendental methods and the modular approaches to the \(ABC\) conjecture to show that the largest prime factor of \(n^{2}+1\) is at least of size \((\log _{2} n)^{2}/\log _{3}n\) where \(\log _{k}\) is the \(k\)-th iterate of the logarithm. This gives a substantial improvement on the best available estimates, which are essentially of size \(\log _{2} n\) going back to work of Chowla in 1934. Using the same ideas, we also obtain significant progress on subexpoential bounds for the \(ABC\) conjecture, which in a case gives the first improvement on a result by Stewart and Yu dating back over two decades. Central to our approach is the connection between Shimura curves and the \(ABC\) conjecture developed by the author.

$n^{2}+1$ 的最大质因数及对亚指数 $ABC$ 的改进
我们将超越方法和模块方法结合起来,证明了 \(n^{2}+1\) 的最大素因子至少有 \((\log _{2} n)^{2}/\log _{3}n\) 的大小,其中 \(\log _{k}\) 是对数的第 \(k\) 次迭代。这比现有的最佳估计值有了很大的改进,现有估计值的大小基本上是 \(\log _{2} n\) ,可以追溯到乔拉(Chowla)在 1934 年的工作。利用同样的思想,我们还在\(ABC\)猜想的次展开边界上取得了重大进展,这是对斯图尔特和于二十多年前的一个结果的首次改进。我们的方法的核心是作者提出的 Shimura 曲线和 (ABC)猜想之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信